[1] |
LIU Rang, LI Ming, LIU Qian, et al. Dual-functional radar-communication waveform design: A symbol-level precoding approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1316–1331. doi: 10.1109/JSTSP.2021.3111438.
|
[2] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
|
[3] |
PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038.
|
[4] |
YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
|
[5] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
|
[6] |
LIU Fan, MASOUROS C, RATNARAJAH T, et al. On range sidelobe reduction for dual-functional radar-communication waveforms[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1572–1576. doi: 10.1109/LWC.2020.2997959.
|
[7] |
SU Nanchi, LIU Fan, and MASOUROS C. Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3162–3174. doi: 10.1109/TWC.2023.3306029.
|
[8] |
JIA Hanbo, LI Xiaoshuai, and MA Lin. Physical layer security optimization with Cramér-Rao bound metric in ISAC systems under sensing-specific imperfect CSI model[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6980–6992. doi: 10.1109/TVT.2023.3347527.
|
[9] |
YU Zhiyuan, REN Hong, PAN Cunhua, et al. Active RIS aided ISAC systems: Beamforming design and performance analysis[J]. IEEE Transactions on Communications, 2024, 72(3): 1578–1595. doi: 10.1109/TCOMM.2023.3332856.
|
[10] |
ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752.
|
[11] |
LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
|
[12] |
GU Xiaohui and ZHANG Guoan. A survey on UAV-assisted wireless communications: Recent advances and future trends[J]. Computer Communications, 2023, 208: 44–78. doi: 10.1016/j.comcom.2023.05.013.
|
[13] |
CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 1–5. doi: 10.1109/ICCPS.2011.6092272.
|
[14] |
曾浩, 吉利霞, 李凤, 等. 16QAM-LFM雷达通信一体化信号设计[J]. 通信学报, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.ZENG Hao, JI Lixia, LI Feng, et al. 16QAM-LFM waveform design for integrated radar and communication[J]. Journal on Communications, 2020, 41(3): 182–189. doi: 10.11959/j.issn.1000-436x.2020050.
|
[15] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
|
[16] |
KIHEI B, COPELAND J A, and CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
|
[17] |
ŞAHIN A, HOQUE S S M, and CHEN Chaoyu. Index modulation with circularly-shifted chirps for dual-function radar and communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2938–2952. doi: 10.1109/TWC.2021.3117063.
|
[18] |
XU S J, CHEN Y, and ZHANG P. Integrated radar and communication based on DS-UWB[C]. 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 2006: 142–144. doi: 10.1109/UWBUS.2006.307182.
|
[19] |
XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. 2006 8th international Conference on Signal Processing, Guilin, China, 2006: 1–4. doi: 10.1109/ICOSP.2006.346041.
|
[20] |
JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
|
[21] |
TANG Lan, ZHANG Ke, DAI Haipeng, et al. Analysis and optimization of ambiguity function in radar-communication integrated systems using MPSK-DSSS[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1546–1549. doi: 10.1109/LWC.2019.2926708.
|
[22] |
CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
|
[23] |
李晓柏, 杨瑞娟, 程伟, 等. 新的互补序列在雷达通信一体化中的应用[J]. 系统工程与电子技术, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.LI Xiaobai, YANG Ruijuan, CHENG Wei, et al. Application of a novel complementary signal to integrated radar and communication[J]. Systems Engineering and Electronics, 2021, 43(3): 693–699. doi: 10.12305/j.issn.1001-506X.2021.03.12.
|
[24] |
赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
|
[25] |
LIU Xiqing, ZHAO Linglan, LIU Wenjing, et al. Complementary coded scrambling RadCom system-an integrated radar and communication design in multi-user-multi-target scenarios[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 544–558. doi: 10.1109/TVT.2023.3301030.
|
[26] |
TSENG C C and LIU C. Complementary sets of sequences[J]. IEEE Transactions on Information Theory, 1972, 18(5): 644–652. doi: 10.1109/TIT.1972.1054860.
|
[27] |
GOLAY M. Complementary series[J]. IRE Transactions on Information Theory, 1961, 7(2): 82–87. doi: 10.1109/TIT.1961.1057620.
|
[28] |
SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615.
|
[29] |
BORWEIN P B and FERGUSON R A. A complete description of Golay pairs for lengths up to 100[J]. Mathematics of Computation, 2003, 73(246): 967–985. doi: S0025-5718(3)01576-X. doi: 10.1090/S0025-5718-03-01576-X.
|
[30] |
GU Zhi, ZHOU Zhengchun, ADHIKARY A R, et al. Asymptotically optimal Golay-ZCZ sequence sets with flexible length[J]. Chinese Journal of Electronics, 2023, 32(4): 806–820. doi: 10.23919/cje.2022.00.266.
|
[31] |
JIN Yi and KOGA H. Basic properties of the complete complementary codes using the DFT matrices and the Kronecker products[C]. 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1–6. doi: 10.1109/ISITA.2008.4895532.
|
[32] |
孙思月. 基于互补码的多用户无线传输技术及码设计方法[D]. [博士论文], 哈尔滨工业大学, 2014.SUN Siyue. Research on complementary coded multi-user wireless communication techniques and code design[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2014.
|