高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限码长域下针对多用户大规模MIMO系统速率优化的高效功率分配算法

胡钰林 肖志成 徐浩 XUHao

胡钰林, 肖志成, 徐浩, XUHao. 有限码长域下针对多用户大规模MIMO系统速率优化的高效功率分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT240241
引用本文: 胡钰林, 肖志成, 徐浩, XUHao. 有限码长域下针对多用户大规模MIMO系统速率优化的高效功率分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT240241
HU Yulin, XIAO Zhicheng, . Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240241
Citation: HU Yulin, XIAO Zhicheng, . Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240241

有限码长域下针对多用户大规模MIMO系统速率优化的高效功率分配算法

doi: 10.11999/JEIT240241
基金项目: 国家重点研发计划(2023YFE0206600)
详细信息
    作者简介:

    胡钰林:男,教授,博士生导师,研究方向为工业物联网、高可靠低时延通信、无人机通信,移动边缘计算等

    肖志成:男,硕士生,研究方向为高可靠低时延通信,多用户MIMO

    徐浩:男,硕士生,研究方向为高可靠低时延通信,移动边缘计算

    通讯作者:

    胡钰林 yulin.hu@whu.edu.cn

  • 中图分类号: TN929.5

Efficient Power Allocation Algorithm for Throughput Optimization of Multi-User Massive MIMO Systems in Finite Blocklength Regime

Funds: The National Key R&D Plan (2023YFE0206600)
  • 摘要: 第六代(6G)移动通信网络需要为大规模节点提供高可靠低时延通信(URLLC)服务。为此,该文针对多用户大规模多输入多输出(MIMO)技术辅助的URLLC下行通信场景,基于有限码长( FBL)域理论表征系统性能,以用户速率公平性为目标,提出一种高效的功率分配算法。具体而言,该文首先针对传统MIMO中基于全局奇异值分解(SVD)的线性预编码方案复杂度高、不能兼顾用户公平性等问题,设计基于局部SVD的预编码方案,以相对较低的复杂度实现对MIMO用户间干扰和用户内干扰的有效抑制。其次,该文以功率分配因子为优化变量、以最大化最小用户速率(MMR)为目标构建优化问题。为解决所构建的高维变量耦合非凸问题,该文通过引入辅助变量、分段McCormick包络将目标函数中香农容量相关项凸松弛处理,实现MMR问题重构。进而该文提出基于连续凸近似(SCA)的优化算法有效求解MMR问题。仿真结果验证了所提优化算法的收敛性与准确性,同时也表明所提优化方案相比于现有方案在系统MMR性能和鲁棒性上均具有优势。
  • 图  1  一种多用户大规模MIMO辅助的URLLC下行链路模型

    图  2  预编码运行时间

    图  3  次优解性能评估,$M = 3$, ${K_g} = 4(1 \le g \le M)$

    图  4  MMR/总吞吐量变化,$M = 6$,${K_g} = 32(1 \le g \le M)$

    图  5  最大最小香农容量随收发端天线数变化

    图  6  最大最小可达速率随码长的变化

    图  7  最大最小可达速率随平均功率的变化,$N = 256$

    图  8  最大最小可达速率随收发天线数变化

    图  9  最大最小可达速率随用户数的变化,

  • [1] HAMIDI-SEPEHR F, SAJADIEH M, PANTELEEV S, et al. 5G URLLC: Evolution of high-performance wireless networking for industrial automation[J]. IEEE Communications Standards Magazine, 2021, 5(2): 132–140. doi: 10.1109/MCOMSTD.001.2000035.
    [2] International Telecommunication Union. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond[M]. Geneva: Electronic Publication, 2015. (查阅网上资料, 未能确认文献类型, 请确认) .
    [3] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [4] 袁伟杰, 李双洋, 种若汐, 等. 面向6G物联网的分布式译码技术[J]. 电子与信息学报, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.

    YUAN Weijie, LI Shuangyang, CHONG Ruoxi, et al. A distributed decoding algorithm for 6G internet-of-things networks[J]. Journal of Electronics & Information Technology, 2021, 43(1): 21–27. doi: 10.11999/JEIT200343.
    [5] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208. (查阅网上所有资料,本条文献和第3条文献重复,请核对) .
    [6] 黄崇文, 季然, 魏丽, 等. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.

    HUANG Chongwen, JI Ran, WEI Li, et al. Electromagnetic channel modeling theory and approaches for holographic MIMO wireless communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
    [7] MA Wenyan, ZHU Lipeng, and ZHANG Rui. MIMO capacity characterization for movable antenna systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3392–3407. doi: 10.1109/TWC.2023.3307696.
    [8] CHI Yuhao, LIU Lei, SONG Lei, et al. Constrained capacity optimal generalized multi-user MIMO: A theoretical and practical framework[J]. IEEE Transactions on Communications, 2022, 70(12): 8086–8104. doi: 10.1109/TCOMM.2022.3207813.
    [9] LV Zhihan, QIAO Liang, and YOU I. 6G-enabled network in box for internet of connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5275–5282. doi: 10.1109/TITS.2020.3034817.
    [10] WANG Bin, XU Ke, ZHENG Shilian, et al. A deep learning-based intelligent receiver for improving the reliability of the MIMO wireless communication system[J]. IEEE Transactions on Reliability, 2022, 71(2): 1104–1115. doi: 10.1109/TR.2022.3148114.
    [11] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [12] YANG Wei, DURISI G, KOCH T, et al. Quasi-static multiple-antenna fading channels at finite blocklength[J]. IEEE Transactions on Information Theory, 2014, 60(7): 4232–4265. doi: 10.1109/TIT.2014.2318726.
    [13] ZHU Yao, HU Yulin, YUAN Xiaopeng, et al. Joint convexity of error probability in blocklength and transmit power in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2409–2423. doi: 10.1109/TWC.2022.3211454.
    [14] ZHAO Linlin, YANG Shaoshi, CHI Xuefen, et al. Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1407–1420. doi: 10.1109/TWC.2021.3104043.
    [15] PENG Qihao, REN Hong, PAN Cunhua, et al. Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory[J]. IEEE Transactions on Communications, 2023, 71(1): 553–568. doi: 10.1109/TCOMM.2022.3224502.
    [16] HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
    [17] FANG Hao, HU Han, ZHANG Yao, et al. Achievable rate analysis and power optimization for cell-free massive MIMO URLLC systems over aging and correlated channels[J]. IEEE Internet of Things Journal, 2024, 11(14): 25239–25250. doi: 10.1109/JIOT.2024.3392298.
    [18] SHENG Zhichao, TUAN H D, NASIR A, et al. Power allocation for energy efficiency and secrecy of wireless interference networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3737–3751. doi: 10.1109/TWC.2018.2815626.
    [19] JIANG Hao, ZHANG Zaichen, WU Liang, et al. A non-stationary geometry-based scattering vehicle-to-vehicle MIMO channel model[J]. IEEE Communications Letters, 2018, 22(7): 1510–1513. doi: 10.1109/LCOMM.2018.2834366.
    [20] HUANG Jie, WANG Chengxiang, CHANG Hengtai, et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2010–2025. doi: 10.1109/JSAC.2020.3000839.
    [21] WANG Jun, WANG Chengxiang, HUANG Jie, et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1576–1589. doi: 10.1109/JSAC.2021.3071850.
    [22] YANG Guanghua, ZHANG Huan, SHI Zheng, et al. Asymptotic outage analysis of spatially correlated rayleigh MIMO channels[J]. IEEE Transactions on Broadcasting, 2021, 67(1): 263–278. doi: 10.1109/TBC.2020.3028346.
    [23] JOUNG H, JO H S, MUN C, et al. Capacity loss due to polarization-mismatch and space-correlation on MISO channel[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2124–2136. doi: 10.1109/TWC.2014.031314.131079.
    [24] LIU An, LAU V K N, and KANANIAN B. Stochastic successive convex approximation for non-convex constrained stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4189–4203. doi: 10.1109/TSP.2019.2925601.
    [25] ZHAN Jinlong and DONG Xiaodai. Interference cancellation aided hybrid beamforming for mmwave multi-user massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2322–2336. doi: 10.1109/TVT.2021.3057547.
    [26] LONG Wenxuan, CHEN Rui, MORETTI M, et al. Joint spatial division and coaxial multiplexing for downlink multi-user OAM wireless backhaul[J]. IEEE Transactions on Broadcasting, 2021, 67(4): 879–893. doi: 10.1109/TBC.2021.3081869.
    [27] FONTENLA-ROMERO O, PÉREZ-SÁNCHEZ B, and GUIJARRO-BERDIÑAS B. LANN-SVD: A non-iterative SVD-based learning algorithm for one-layer neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3900–3905. doi: 10.1109/TNNLS.2017.2738118.
    [28] KOLODZIEJ S, CASTRO P M, and GROSSMANN I E. Global optimization of bilinear programs with a multiparametric disaggregation technique[J]. Journal of Global Optimization, 2013, 57(4): 1039–1063. doi: 10.1007/s10898-012-0022-1.
    [29] DE ASSIS L S, CAMPONOGARA E, ZIMBERG B, et al. A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil terminal[J]. Computers & Chemical Engineering, 2017, 106: 309–321. doi: 10.1016/j.compchemeng.2017.06.012.
    [30] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 67–95.
    [31] NASIR A A, TUAN H D, NGO H Q, et al. Cell-free massive MIMO in the short blocklength regime for URLLC[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5861–5871. doi: 10.1109/TWC.2021.3070836.
  • 加载中
图(9)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 修回日期:  2024-12-09
  • 网络出版日期:  2024-12-12

目录

    /

    返回文章
    返回