高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散相移IRS辅助放大转发中继网络的性能分析

董榕恩 谢中毅 马海波 赵飞龙 束锋

董榕恩, 谢中毅, 马海波, 赵飞龙, 束锋. 离散相移IRS辅助放大转发中继网络的性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT240236
引用本文: 董榕恩, 谢中毅, 马海波, 赵飞龙, 束锋. 离散相移IRS辅助放大转发中继网络的性能分析[J]. 电子与信息学报. doi: 10.11999/JEIT240236
DONG Rongen, XIE Zhongyi, MA Haibo, ZHAO Feilong, SHU Feng. Performance Analysis of Discrete-Phase-Shifter IRS-aided Amplify-and-Forward Relay Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240236
Citation: DONG Rongen, XIE Zhongyi, MA Haibo, ZHAO Feilong, SHU Feng. Performance Analysis of Discrete-Phase-Shifter IRS-aided Amplify-and-Forward Relay Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240236

离散相移IRS辅助放大转发中继网络的性能分析

doi: 10.11999/JEIT240236
基金项目: 国家自然科学基金(U22A2002, 62071234),海南省科技专项基金(ZDKJ2021022),海南大学科研启动项目(KYQD(ZR)-21008),海南大学信息技术协同创新中心项目(XTCX2022XXC07)
详细信息
    作者简介:

    董榕恩:女,博士生,研究方向为方向调制、IRS辅助的无线网络

    谢中毅:男,硕士生,研究方向为IRS辅助的无线通信

    马海波:男,高级工程师,研究方向为无线通信

    赵飞龙:男,教授级高级工程师,研究方向为电磁波传播及其应用、移动通信、算力网络等

    束锋:男,博士生导师,研究方向为智能无线通信、信息安全、大规模MIMO测向等

    通讯作者:

    束 锋 shufeng0101@163.com

  • 中图分类号: TN92

Performance Analysis of Discrete-Phase-Shifter IRS-aided Amplify-and-Forward Relay Network

Funds: The National Natural Science Foundation of China (U22A2002, 62071234), The Hainan Province Science and Technology Special Fund (ZDKJ2021022), The Scientific Research Fund Project of Hainan University (KYQD(ZR)-21008), The Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
  • 摘要: 作为一种通过算法智能地控制信号反射来重构无线通信环境的新技术,智能反射面(IRS)近年来受到了广泛关注。与传统的中继系统相比,IRS辅助的中继系统可有效节约成本和能耗,并显著提高系统性能。然而,配备离散移相器的IRS会导致相位量化误差,从而降低接收机的接收性能。为了分析IRS相位量化误差导致的性能损失,该文基于弱大数定律和瑞利分布,在瑞利信道下,推导了关于移相器量化比特数的双IRS辅助放大转发中继网络的信噪比性能损失与可达速率的闭合表达式。此外,基于Taylor级数展开表达式,推导了其近似性能损失闭合表达式。仿真结果表明,系统的信噪比和可达速率性能损失随着量化比特数的增加而逐渐减小,而随着 IRS 相移元件数的增加而逐渐增大。当IRS相移元件数为 4时,系统的信噪比和可达速率性能损失分别小于0.06 dB 和0.03 bits/(s·Hz)。
  • 图  1  双IRS辅助放大转发中继的系统模型图

    图  2  信噪比性能损失随IRS-1阵元个数变化曲线图

    图  3  可达速率随IRS-1阵元个数变化曲线图

    图  4  可达速率随量化比特数变化曲线图

  • [1] LIN Ruiquan, QIU Hangding, WANG Jun, et al. Physical-layer security enhancement in energy-harvesting-based cognitive internet of things: A GAN-powered deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2024, 11(3): 4899–4913. doi: 10.1109/JIOT.2023.3300770.
    [2] LIN Ruiquan, LI Fushuai, WANG Jun, et al. A blockchain-based method to defend against massive SSDF attacks in cognitive internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6954–6967. doi: 10.1109/TVT.2023.3347430.
    [3] COVER T and GAMAL A E. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory, 1979, 25(5): 572–584. doi: 10.1109/TIT.1979.1056084.
    [4] DING Haiyang, GE Jianhua, DA COSTA D B, et al. Diversity and coding gains of fixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading[J]. IEEE Communications Letters, 2010, 14(8): 734–736. doi: 10.1109/LCOMM.2010.08.100530.
    [5] BLETSAS A, SHIN H, and WIN M Z. Cooperative communications with outage-optimal opportunistic relaying[J]. IEEE Transactions on Wireless Communications, 2007, 6(9): 3450–3460. doi: 10.1109/TWC.2007.06020050.
    [6] LANEMAN J N and WORNELL G W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Transactions on Information Theory, 2023, 49(10): 2415–2425. doi: 10.1109/TIT.2003.817829.
    [7] ARTHI M, JOY J J, ARULMOZHIVARMAN P, et al. An efficient relay station deployment scheme based on the coverage and budget constraints in multi-hop relay networks[C]. 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, 2015: 124–128. doi: 10.1109/ICCSP.2015.7322702.
    [8] YILMAZ E, ZAKHOUR R, GESBERT D, et al. Multi-pair two-way relay channel with multiple antenna relay station[J]. 2010 IEEE International Conference on Communications, Cape Town, South Africa, 2010: 1–5. doi: 10.1109/ICC.2010.5502396.
    [9] RANKOV B and WITTNEBEN A. Spectral efficient protocols for half-duplex fading relay channels[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 379–389. doi: 10.1109/JSAC.2007.070213.
    [10] ZHANG Zhang, LV Tiejun, and SU Xin. Combining cooperative diversity and multiuser diversity: a fair scheduling scheme for multi-source multi-relay networks[J]. IEEE Communications Letters, 2011, 15(12): 1353–1355. doi: 10.1109/LCOMM.2011.102611.111715.
    [11] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [12] CHEN Kangjian, QI Chenhao, DOBRE O A, et al. Simultaneous beam training and target sensing in ISAC systems with RIS[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2696–2710. doi: 10.1109/TWC.2023.3302319.
    [13] JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi: 10.1109/TWC.2021.3066806.
    [14] ZHANG Chencheng, QI Chenhao, and NALLANATHAN A. Fast multibeam training for RIS-assisted millimeter wave massive MIMO[J]. IEEE Communications Letters, 2024, 28(1): 168–172. doi: 10.1109/LCOMM.2023.3333683.
    [15] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766.
    [16] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780.
    [17] YILDIRIM I, KILINC F, BASAR E, et al. Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension[J]. IEEE Communications Letters, 2021, 25(5): 1692–1696. doi: 10.1109/LCOMM.2021.3054819.
    [18] GALAPPATHTHIGE D L, DEVKOTA A, and AMARASURIYA G. On the performance of IRS-assisted relay systems[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685500.
    [19] LIU Chang, ZHOU Jiayu, GAO Ying, et al. IRS-aided secure communications over an untrusted AF relay system[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8620–8633. doi: 10.1109/TWC.2023.3264626.
    [20] TALWAR S, JING Yindi, and SHAHBAZPANAHI S. Joint relay selection and power allocation for two-way relay networks[J]. IEEE Signal Processing Letters, 2011, 18(2): 91–94. doi: 10.1109/LSP.2010.2096466.
    [21] TAO Ye, LI Qiang, and GE Xiaohu. Sum rate optimization for IRS-aided two-way AF relay systems[C]. 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 2021: 823–828. doi: 10.1109/ICCC52777.2021.9580369.
    [22] DONG Rongen, SHI Baihua, ZHAN Xichao, et al. Performance analysis of massive hybrid directional modulation with mixed phase shifters[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5604–5608. doi: 10.1109/TVT.2022.3152807.
    [23] DONG Rongen, TENG Yin, SUN Zhongwen, et al. Performance analysis of wireless network aided by discrete-phase-shifter IRS[J]. Journal of Communications and Networks, 2022, 24(5): 603–612. doi: 10.23919/JCN.2022.000029.
  • 加载中
图(4)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-07-17
  • 网络出版日期:  2024-07-04

目录

    /

    返回文章
    返回