高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种快速的多尺度多输入编码树单元互补分类网络

唐述 周广义 谢显中 赵瑜 杨书丽

唐述, 周广义, 谢显中, 赵瑜, 杨书丽. 一种快速的多尺度多输入编码树单元互补分类网络[J]. 电子与信息学报, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223
引用本文: 唐述, 周广义, 谢显中, 赵瑜, 杨书丽. 一种快速的多尺度多输入编码树单元互补分类网络[J]. 电子与信息学报, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223
TANG Shu, ZHOU Guangyi, XIE Xianzhong, ZHAO Yu, YANG Shuli. A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223
Citation: TANG Shu, ZHOU Guangyi, XIE Xianzhong, ZHAO Yu, YANG Shuli. A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3646-3653. doi: 10.11999/JEIT240223

一种快速的多尺度多输入编码树单元互补分类网络

doi: 10.11999/JEIT240223
基金项目: 国家自然科学基金(61601070),重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0680),重庆市教育委员会科学技术研究重大项目(KJZD-M202300101),重庆邮电大学博士研究生创新人才项目(BYJS202217)
详细信息
    作者简介:

    唐述:男,副教授,研究方向为视频信号处理、低水平视觉任务、图像超分辨率重建、模糊图像复原

    周广义:男,硕士,研究方向为视频信号处理

    谢显中:男,教授,研究方向为信号与信息处理、计算机通信方向、通信与信息系统

    赵瑜:男,硕士,研究方向为视频信号处理

    杨书丽:女,博士,研究方向为图像超分辨率重建

    通讯作者:

    唐述 tangshu@cqupt.edu.cn

  • 中图分类号: TN939.1; TP391.4

A Multi-scale-multi-input Complementation Classification Network for Fast Coding Tree Unit Partition

Funds: The National Natural Science Foundation of China (61601070), Chongqing Natural Science Foundation General Project (CSTB2023NSCQ-MSX0680), The Major Project of Science and Technology Research of Chongqing Education Commission (KJZD-M202300101), The Innovative Talents Project for Doctoral students of Chongqing University of Posts and Telecommunications (BYJS202217)
  • 摘要: 深度神经网络(DNN)已被广泛应用到高效视频编码(HEVC)编码树单元(CTU)的深度划分中,显著降低了编码复杂度。然而现有的基于DNN的CTU深度划分方法却忽略了不同尺度编码单元(CU)间的特征相关性和存在着分类错误累积等缺陷。基于此,该文提出一种多尺度多输入的互补分类网络(MCCN)来实现更高效且更准确的HEVC帧内CTU深度划分。首先,提出一种多尺度多输入的卷积神经网络(MMCNN),通过融合不同尺度CU的特征来建立CU间的关联,进一步提升网络的表达能力。然后,提出一种互补的分类策略(CCS),通过结合二分类和三分类,并采用投票机制来决定CTU中每个CU的最终深度值,有效避免了现有方法中存在的错误累积效应,实现了更准确的CTU深度划分。大量的实验结果表明,该文所提MCCN能够更大程度降低HEVC编码的复杂度,同时实现更准确的CTU深度划分: 仅以增加3.18%的平均增量比特率(BD-BR)为代价,降低了71.49%的平均编码复杂度。同时,预测32×32 CU和16×16 CU的深度准确率分别提升了0.65%~0.93%和2.14%~9.27%。
  • 图  1  本文所提CCS

    图  2  二分类MMCNN

    图  3  三分类MMCNN

    表  1  MMCNN的有效性消融实验(%)

    模型 平均BD-BR 平均ΔT
    MCCN 3.18 71.49
    MCCN-NoQP 9.80 58.60
    MCCN-OneScale 11.50 64.30
    下载: 导出CSV

    表  2  消融实验:不同大小CU的深度划分平均准确率比较(%)

    MCCN MCCN-SBCS
    64 × 64 CU 90.30 88.05
    32× 32 CU 87.55 86.51
    16× 16 CU 89.69 85.71
    下载: 导出CSV

    表  3  MCCN和MCCN-SBC的平均BD-BR和平均ΔT比较(%)

    模型 平均BD-BR 平均ΔT
    MCCN 3.18 71.49
    MCCN-SBCS 7.86 67.00
    下载: 导出CSV

    表  4  平均准确率比较(其中最好的性能已加粗标记)(%)

    本文 文献[12] 文献[15]
    64 × 64 CU 90.30 90.98 91.18
    32× 32 CU 87.55 86.62 86.90
    16×16 CU 89.69 80.42 87.55
    下载: 导出CSV

    表  5  所有方法在JCT-VC标准视频测试集上的平均BD-BR和平均ΔT比较(其中最好的性能已加粗标记)(%)

    指标本文方法2017年2018年2023年2022年2021年2022年2021年
    文献[11]文献[12]文献[13]文献[14]文献[15]文献[16]文献[17]
    BD-BR3.182.212.251.942.042.024.271.81
    ΔT71.4962.2561.8564.0559.7165.5570.3960.63
    下载: 导出CSV
  • [1] SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668. doi: 10.1109/TCSVT.2012.2221191.
    [2] WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al. Overview of the H. 264/AVC video coding standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576. doi: 10.1109/TCSVT.2003.815165.
    [3] POURAZAD M T, DOUTRE C, AZIMI M, et al. HEVC: The new gold standard for video compression: How does HEVC compare with H. 264/AVC?[J]. IEEE Consumer Electronics Magazine, 2012, 1(3): 36–46. doi: 10.1109/MCE.2012.2192754.
    [4] ZHAO Liang, FAN Xiaopeng, MA Siwei, et al. Fast intra-encoding algorithm for high efficiency video coding[J]. Signal Processing: Image Communication, 2014, 29(9): 935–944. doi: 10.1016/j.image.2014.06.008.
    [5] KIM N, JEON S, SHIM H J, et al. Adaptive keypoint-based CU depth decision for HEVC intra coding[C]. 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nara, Japan, 2016: 1–3. doi: 10.1109/BMSB.2016.7521923.
    [6] ZHANG Tao, SUN Mingting, ZHAO Debin, et al. Fast intra-mode and CU size decision for HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726. doi: 10.1109/TCSVT.2016.2556518.
    [7] JAMALI M and COULOMBE S. Fast HEVC intra mode decision based on RDO cost prediction[J]. IEEE Transactions on Broadcasting, 2019, 65(1): 109–122. doi: 10.1109/TBC.2018.2847464.
    [8] AMNA M, IMEN W, NACIR O, et al. SVM-Based method to reduce HEVC CU partition complexity[C]. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), Sétif, Algeria, 2022: 480–484. doi: 10.1109/SSD54932.2022.9955731.
    [9] WERDA I, MARAOUI A, SAYADI F E, et al. Fast CU partition and intra mode prediction method for HEVC[C]. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), Hammamet, Tunisia, 2022: 562–566. doi: 10.1109/SETIT54465.2022.9875798.
    [10] YU Xianyu, LIU Zhenyu, LIU Junjie, et al. VLSI friendly fast CU/PU mode decision for HEVC intra encoding: Leveraging convolution neural network[C]. 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, 2015: 1285–1289. doi: 10.1109/ICIP.2015.7351007.
    [11] LI Tianyi, XU Mai, and DENG Xin. A deep convolutional neural network approach for complexity reduction on intra-mode HEVC[C]. 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 2017: 1255–1260. doi: 10.1109/ICME.2017.8019316.
    [12] XU Mai, LI Tianyi, WANG Zulin, et al. Reducing complexity of HEVC: A deep learning approach[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5044–5059. doi: 10.1109/TIP.2018.2847035.
    [13] LI Huayu, WEI Geng, WANG Ting, et al. Reducing video coding complexity based on CNN-CBAM in HEVC[J]. Applied Sciences, 2023, 13(18): 10135. doi: 10.3390/app131810135.
    [14] QIN Liming, ZHU Zhongjie, BAI Yongqiang, et al. A complexity-reducing HEVC intra-mode method based on VGGNet[J]. Journal of Computers, 2022, 33(4): 57–67. doi: 10.53106/199115992022083304005.
    [15] FENG Aolin, GAO Changsheng, LI Li, et al. Cnn-based depth map prediction for fast block partitioning in HEVC intra coding[C]. 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 2021: 1–6. doi: 10.1109/ICME51207.2021.9428069.
    [16] HARI P, JADHAV V, and RAO B K N S. CTU partition for intra-mode HEVC using convolutional neural network[C]. 2022 IEEE International Symposium on Smart Electronic Systems (ISES), Warangal, India, 2022: 548–551. doi: 10.1109/iSES54909.2022.00120.
    [17] LORKIEWICZ M, STANKIEWICZ O, DOMANSKI M, et al. Fast selection of INTRA CTU partitioning in HEVC encoders using artificial neural networks[C]. 2021 Signal Processing Symposium (SPSympo), LODZ, Poland, 2021: 177–182. doi: 10.1109/SPSympo51155.2020.9593483.
    [18] FENG Zeqi, LIU Pengyu, JIA Kebin, et al. HEVC fast intra coding based CTU depth range prediction[C]. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 2018: 551–555. doi: 10.1109/ICIVC.2018.8492898.
    [19] LI Yixiao, LI Lixiang, FANG Yuan, et al. Bagged tree and ResNet-based joint end-to-end fast CTU partition decision algorithm for video intra coding[J]. Electronics, 2022, 11(8): 1264. doi: 10.3390/electronics11081264.
    [20] IMEN W, AMNA M, FATMA B, et al. Fast HEVC intra-CU decision partition algorithm with modified LeNet-5 and AlexNet[J]. Signal, Image and Video Processing, 2022, 16(7): 1811–1819. doi: 10.1007/s11760-022-02139-w.
    [21] YAO Chao, XU Chenming, and LIU Meiqin. RDNet: Rate–distortion-based coding unit partition network for intra-prediction[J]. Electronics, 2022, 11(6): 916. doi: 10.3390/electronics11060916.
    [22] LINCK I, GOMEZ A T, and ALAGHBAND G. CNN quadtree depth decision prediction for block partitioning in HEVC intra-mode[C]. 2023 Data Compression Conference (DCC), Snowbird, USA, 2023: 352. doi: 10.1109/DCC55655.2023.00054.
    [23] AMNA M, IMEN W, and EZAHRA S F. Deep learning for intra frame coding[C]. 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 2021: 1–4. doi: 10.1109/ICEET53442.2021.9659742.
    [24] 贾克斌, 崔腾鹤, 刘鹏宇, 等. 基于深层特征学习的高效率视频编码中帧内快速预测算法[J]. 电子与信息学报, 2021, 43(7): 2023–2031. doi: 10.11999/JEIT200414.

    JIA Kebin, CUI Tenghe, LIU Pengyu, et al. Fast prediction algorithm in high efficiency video coding intra-mode based on deep feature learning[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2023–2031. doi: 10.11999/JEIT200414.
    [25] ZUO Yanchen, GAO Changsheng, LIU Dong, et al. Learned rate-distortion cost prediction for ultrafast screen content intra coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1976–1980. doi: 10.1109/TCSVT.2023.3296515.
    [26] WU Yi and CHEN Lei. Fast algorithm for HEVC using frequency-based convolutional neural networks[C]. 2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT), Shenzhen, China, 2023: 559–563. doi: 10.1109/EIECT60552.2023.10442731.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-07-21
  • 网络出版日期:  2024-08-03
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回