高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微多普勒辅助的城市环境无人机编队检测方法

张杰 朱宇 王洋

张杰, 朱宇, 王洋. 微多普勒辅助的城市环境无人机编队检测方法[J]. 电子与信息学报, 2024, 46(9): 3583-3591. doi: 10.11999/JEIT240203
引用本文: 张杰, 朱宇, 王洋. 微多普勒辅助的城市环境无人机编队检测方法[J]. 电子与信息学报, 2024, 46(9): 3583-3591. doi: 10.11999/JEIT240203
ZHANG Jie, ZHU Yu, WANG Yang. Micro-Doppler-assisted Unmanned Aerial Vehicle Formation Detection Method in Urban Environments[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3583-3591. doi: 10.11999/JEIT240203
Citation: ZHANG Jie, ZHU Yu, WANG Yang. Micro-Doppler-assisted Unmanned Aerial Vehicle Formation Detection Method in Urban Environments[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3583-3591. doi: 10.11999/JEIT240203

微多普勒辅助的城市环境无人机编队检测方法

doi: 10.11999/JEIT240203
基金项目: 重庆市自然科学基金(cstc2021jcyj-msxmX0634, CSTB2022NSCQ-MSX1125),重庆市教委科学技术研究项目(KJZD-K202300607),重庆市自然科学基金创新发展联合基金(CSTB2022NSCQ-LZX0037)
详细信息
    作者简介:

    张杰:男,教授,研究方向为无人机检测,小蜂窝网络规划,人工智能,天线与电波传播等

    朱宇:男,硕士生,研究方向为目标检测

    王洋:男,教授,研究方向为6G无线传输技术,智能反射系统,目标检测,毫米波通信,无线传输中的人工智能等

    通讯作者:

    王洋 wangyang@cqupt.edu.cn

  • 中图分类号: TN957.51

Micro-Doppler-assisted Unmanned Aerial Vehicle Formation Detection Method in Urban Environments

Funds: The Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0634, CSTB2022NSCQ-MSX1125), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202300607), The Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing (CSTB2022NSCQ-LZX0037)
  • 摘要: 针对城市复杂环境下电磁环境复杂、多径杂波和干扰信号密集等现象,传统的无人机(UAV)检测方法通过获取回波信号提取目标多普勒信息进行检测,易受到环境影响导致检测效果不理想。该文提出微多普勒辅助的城市环境无人机编队检测方法,充分利用无人机的微动特征,能够在复杂环境下提高检测精度。首先,参数化建模表征城市复杂环境下无人机旋翼的雷达回波微多普勒信号,利用YOLOv5s检测微多普勒闪烁脉冲,有效提取位置信息;然后,引入雷达信号分选方法的脉冲重复间隔(PRI)变换,分类获得无人机编队数量;最后,利用K-means算法验证无人机编队检测方法的准确性。结果表明,所提方法在信噪比2 dB时7架无人机的检测精度高于90%,能够用于城市复杂环境存在干扰脉冲、多径效应、局部脉冲丢失的无人机编队检测。
  • 图  1  雷达和无人机旋翼叶片的几何关系

    图  2  YOLOv5s的网络框图

    图  3  基于YOLOv5s的无人机特征提取

    图  4  分选数据的剔除结果

    图  5  无人机编队检测识别结果

    图  6  城市复杂环境下的无人机编队时频图

    图  7  无人机编队检测方法的实验结果

    表  1  无人机编队参数

    仿真参数数值
    旋翼叶片数目2
    旋翼长度(${\text{cm}}$)1.73,1.91,1.82
    无人机速度(${\text{m/s}}$)1.9,2.5,2.3
    旋翼转速(${\text{r/s}}$)3.27,3.97,3.62
    初相位($^\circ $)0,18,36
    弧度($^\circ $)45,45,45
    叶片散射系数(${\text{dBsm}}$)1,1,1
    下载: 导出CSV

    表  2  YOLOV5s网络参数

    网络参数配置
    Learning rate0.01
    Momentum0.937
    Weight decay0.000 5
    Batch size16
    Depth multiple0.33
    Width multiple0.50
    下载: 导出CSV

    表  3  不同无人机编队数量下的检测准确率

    无人机编队数量(架)检测准确率(%)
    199.8
    299.4
    399.1
    498.5
    598.0
    695.6
    791.1
    885.5
    981.2
    下载: 导出CSV
  • [1] 任智, 张栋, 唐硕, 等. 无人机集群反制与对抗技术探讨[J]. 指挥与控制学报, 2023, 9(6): 660–672. doi: 10.3969/j.issn.2096-0204.2023.06.0660.

    REN Zhi, ZHANG Dong, TANG Shuo, et al. Discussion on technologies of UAV swarm countermeasures and confrontation[J]. Journal of Command and Control, 2023, 9(6): 660–672. doi: 10.3969/j.issn.2096-0204.2023.06.0660.
    [2] 于威, 侯学隆. 从纳卡冲突看无人机作战运用[J]. 舰船电子工程, 2022, 42(10): 8–12. doi: 10.3969/j.issn.1672-9730.2022.10.003.

    YU Wei and HOU Xuelong. Application of unmanned aerial vehicles in nagorno-karabakh conflict[J]. Ship Electronic Engineering, 2022, 42(10): 8–12. doi: 10.3969/j.issn.1672-9730.2022.10.003.
    [3] 杨佳会, 朱超磊, 许佳. 俄乌冲突中的无人机运用[J]. 战术导弹技术, 2022(3): 116–123. doi: 10.16358/j.issn.1009-1300.20220081.

    YANG Jiahui, ZHU Chaolei, and XU Jia. Analysis of UAV deployment in Russia-Ukraine conflict[J]. Tactical Missile Technology, 2022(3): 116–123. doi: 10.16358/j.issn.1009-1300.20220081.
    [4] XU Chunbao, JIN Songpo, DING Zhoupeng, et al. Transmit beam control in low-altitude slow-moving small targets detection[C]. The 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 2022: 470–473. doi: 10.1109/ICSP54964.2022.9778645.
    [5] CHEN V C. Analysis of radar micro-Doppler with time-frequency transform[C]. The Tenth IEEE Workshop on Statistical Signal and Array Processing (Cat. No. 00TH8496), Pocono Manor, USA, 2000: 463–466. doi: 10.1109/SSAP.2000.870167.
    [6] MA Beili, CHEN Baixiao, ZHANG Zhengrong, et al. Classification of UAV and ground targets by micro-Doppler signatures based on PD surveillance radar[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 1361–1365. doi: 10.1109/Radar53847.2021.10028361.
    [7] KANG K B, CHOI J H, CHO B L, et al. Analysis of micro-Doppler signatures of small UAVs based on Doppler spectrum[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3252–3267. doi: 10.1109/TAES.2021.3074208.
    [8] JI Guangyu, SONG Chen, and HUO Hongtao. Detection and identification of low-slow-small rotor unmanned aerial vehicle using micro-Doppler information[J]. IEEE Access, 2021, 9: 99995–100008. doi: 10.1109/ACCESS.2021.3096264.
    [9] BJÖRKLUND S and WADSTRÖMER N. Target detection and classification of small drones by deep learning on radar micro-Doppler[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–6. doi: 10.1109/RADAR41533.2019.171294.
    [10] GAO Chengshuai, ZHOU Tao, WANG Bingqi, et al. Research on Anti Drone swarm technology based on complex urban environment[C]. 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), Bengaluru, India, 2023: 1–6. doi: 10.1109/NMITCON58196.2023.10275854.
    [11] LV Ning and BAI Yunpeng. A UAV target recognition method based on micro-Doppler feature fusion[C]. The 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 2023: 970–973. doi: 10.1109/EIECS59936.2023.10435590.
    [12] 张亚豪. 低空小型无人机雷达检测与识别[D]. [硕士论文], 哈尔滨工业大学, 2021. doi: 10.27061/d.cnki.ghgdu.2021.001396.

    ZHANG Yahao. Low altitude small drone radar detection and recognition[D]. [Master dissertation], Harbin Institute of Technology, 2021. doi: 10.27061/d.cnki.ghgdu.2021.001396.
    [13] DAHIROU Z and ZHENG Mao. Motion detection and object detection: Yolo (You Only Look Once)[C]. The 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China, 2021: 250–257. doi: 10.1109/ICNISC54316.2021.00053.
    [14] 张怡霄, 郭文普, 康凯, 等. 基于数据场联合PRI变换与聚类的雷达信号分选[J]. 系统工程与电子技术, 2019, 41(7): 1509–1515. doi: 10.3969/j.issn.1001-506X.2019.07.11.

    ZHANG Yixiao, GUO Wenpu, KANG Kai, et al. Radar signal sorting method based on data field combined PRI transform and clustering[J]. Systems Engineering and Electronics, 2019, 41(7): 1509–1515. doi: 10.3969/j.issn.1001-506X.2019.07.11.
    [15] 陈涛, 王天航, 郭立民. 基于PRI变换的雷达脉冲序列搜索方法[J]. 系统工程与电子技术. doi: 10.3969/j.issn.1001-506X.2017.06.12.

    CHEN Tao, WANG Tianghang, and GUO Limin. Sequence searching methods of radar signal pulses based on PRI transform algorithm[J]. Systems Engineering and Electronics. doi: 10.3969/j.issn.1001-506X.2017.06.12.
    [16] 杨波, 孙闽红, 仇兆炀, 等. 基于YOLOv5与PRI变换的无人机编队检测[J]. 现代雷达, 2023, 45(9): 53–60. doi: 10.16592/j.cnki.1004-7859.2023.09.009.

    YANG Bo, SUN Minhong, QIU Zhaoyang, et al. UAV-formations detection based on YOLOv5 and PRI transformation[J]. Modern Radar, 2023, 45(9): 53–60. doi: 10.16592/j.cnki.1004-7859.2023.09.009.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  51
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-07-22
  • 网络出版日期:  2024-08-03
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回