高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向卫星遥感图像场景重建的神经辐射场方法综述

周鑫 王洋 孙显 林道玉 刘俊义 付琨

周鑫, 王洋, 孙显, 林道玉, 刘俊义, 付琨. 面向卫星遥感图像场景重建的神经辐射场方法综述[J]. 电子与信息学报, 2024, 46(5): 1582-1590. doi: 10.11999/JEIT240202
引用本文: 周鑫, 王洋, 孙显, 林道玉, 刘俊义, 付琨. 面向卫星遥感图像场景重建的神经辐射场方法综述[J]. 电子与信息学报, 2024, 46(5): 1582-1590. doi: 10.11999/JEIT240202
ZHOU Xin, WANG Yang, SUN Xian, LIN Daoyu, LIU Junyi, FU Kun. A Review of Neural Radiance Field Approaches for Scene Reconstruction of Satellite Remote Sensing Imagery[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1582-1590. doi: 10.11999/JEIT240202
Citation: ZHOU Xin, WANG Yang, SUN Xian, LIN Daoyu, LIU Junyi, FU Kun. A Review of Neural Radiance Field Approaches for Scene Reconstruction of Satellite Remote Sensing Imagery[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1582-1590. doi: 10.11999/JEIT240202

面向卫星遥感图像场景重建的神经辐射场方法综述

doi: 10.11999/JEIT240202
详细信息
    作者简介:

    周鑫:男,博士生,研究方向为基于隐式神经表示的重建与渲染

    王洋:女,副研究员,研究方向为时空大数据可视分析

    孙显:男,研究员,研究方向为计算机视觉与遥感图像理解,地理空间大数据解译

    林道玉:男,助理研究员,研究方向为图像生成与场景渲染

    刘俊义:男,研究员,研究方向为地理空间大数据挖掘,多源信息智能融合

    付琨:男,研究员,研究方向为计算机视觉与遥感图像理解,地理空间信息挖掘与可视化

    通讯作者:

    刘俊义 liujy004735@aircas.ac.cn

  • 中图分类号: TN911.6

A Review of Neural Radiance Field Approaches for Scene Reconstruction of Satellite Remote Sensing Imagery

  • 摘要: 随着高分辨率卫星遥感图像成为认知地理空间不可或缺的重要手段,卫星遥感图像在城市建图、生态监测和导航等领域发挥着日益重要的作用,利用卫星遥感图像进行地球表面大规模3维重建成为了计算机视觉和摄影测量领域的研究热点。神经辐射场(NeRF)利用可微渲染学习场景的隐式表示,在复杂场景新视图合成任务中实现了逼真的视觉效果,并在3维场景重建和渲染领域获得了极大的关注。近期的研究主要集中在利用神经辐射场技术,从卫星遥感图像中提取场景表示及其重建。面向卫星遥感图像的神经辐射场方法主要集中在光线空间优化、场景表示优化以及模型高效训练3方面。该文全面归纳了神经辐射场技术在卫星遥感应用中的最新进展。首先介绍神经辐射场技术的基本概念及相关数据集。然后提出一个面向卫星遥感图像的神经辐射场方法分类框架,用于系统性地回顾和整理该技术在卫星遥感领域的研究进展。接着详述了神经辐射场技术在实际卫星遥感场景应用中的相关成果。最后,基于当前研究所面临的问题和挑战进行分析和讨论,同时对未来的发展趋势和研究方向进行了展望。
  • 图  1  NeRF体积渲染和训练过程[1]

    图  2  神经辐射场方法流程

    图  3  S-NeRF渲染模型[16]

    图  4  SpS-NeRF立体匹配重建结果[2]

    图  5  Sat-Mesh网格模型重建结果[18]

    图  6  Season-NeRF季节特征风格转换[26]

    表  1  神经辐射场常用数据集

    数据集名称类别场景数量分辨率/
    像素
    每场景
    图像数量
    Synthetic NeRF物体8800×800400
    LLFF前向场景81008×75620~62
    Mip-NeRF 360室内、室外场景91237×822100~330
    Tanks and Temples室外场景41920×1080283
    下载: 导出CSV

    表  2  DFC2019数据集详细信息

    1 2 3 4
    区域编号 004 068 214 260
    输入图像 9 17 21 15
    高度范围 [–24, 1] [–27, 30] [–29, 73] [–30, 13]
    纬度 30.357 30.348 30.316 30.311
    经度 –81.706 –81.663 –81.663 –81.663
    下载: 导出CSV

    表  3  光线空间优化方法总结

    光线空间优点缺点代表方法
    球坐标表示易于理解和计算精度略低S-NeRF(2021年)
    ECEF坐标表示适合精确位置计算计算变换复杂且不直观Sat-NeRF(2022年)
    UTM坐标表示易于理解和应用需要额外的高度信息EO-NeRF(2023年)
    RPC近似模型表示精度较高,灵活性高近似过程存在误差Sat-Mesh(2023年)
    下载: 导出CSV
  • [1] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99–106. doi: 10.1145/3503250.
    [2] ZHANG Lulin and RUPNIK E. Sparsesat-NeRF: Dense depth supervised neural radiance fields for sparse satellite images[J]. arXiv preprint arXiv: 2309.00277, 2023. doi: 10.48550/arXiv.2309.00277.
    [3] BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 5835–5844. doi: 10.1109/ICCV48922.2021.00580.
    [4] TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 632.
    [5] TANCIK M, CASSER V, YAN Xinchen, et al. Block-NeRF: Scalable large scene neural view synthesis[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8238–8248. doi: 10.1109/CVPR52688.2022.00807.
    [6] MAX N. Optical models for direct volume rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1(2): 99–108. doi: 10.1109/2945.468400.
    [7] GAO K, GAO Yina, HE Hongjie, et al. NeRF: Neural radiance field in 3D vision, a comprehensive review[J]. arXiv preprint arXiv: 2210.00379, 2022. doi: 10.48550/arXiv.2210.00379.
    [8] LORENSEN W E and CLINE H E. Marching cubes: A high resolution 3D surface construction algorithm[M]. WOLFE R. Seminal Graphics: Pioneering Efforts that Shaped the Field. New York: Association for Computing Machinery, 1998: 347–353. doi: 10.1145/280811.281026.
    [9] MILDENHALL B, SRINIVASAN P P, ORTIZ-CAYON R, et al. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[J]. ACM Transactions on Graphics, 2019, 38(4): 29. doi: 10.1145/3306346.3322980.
    [10] BARRON J T, MILDENHALL B, VERBIN D, et al. Mip-NeRF 360: Unbounded anti-aliased neural radiance fields[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5460–5469. doi: 10.1109/CVPR52688.2022.00539.
    [11] KNAPITSCH A, PARK J, ZHOU Qianyi, et al. Tanks and temples: Benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics, 2017, 36(4): 78. doi: 10.1145/3072959.3073599.
    [12] BOSCH M, FOSTER K, CHRISTIE G, et al. Semantic stereo for incidental satellite images[C]. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2019: 1524–1532. doi: 10.1109/WACV.2019.00167.
    [13] LE SAUX B, YOKOYA N, HANSCH R, et al. 2019 data fusion contest [technical committees][J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 103–105. doi: 10.1109/MGRS.2019.2893783.
    [14] MARÍ R, FACCIOLO G, and EHRET T. Sat-NeRF: Learning multi-view satellite photogrammetry with transient objects and shadow modeling using RPC cameras[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, USA, 2022: 1310–1320. doi: 10.1109/CVPRW56347.2022.00137.
    [15] SCHÖNBERGER J L and FRAHM J M. Structure-from-motion revisited[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4104–4113. doi: 10.1109/CVPR.2016.445.
    [16] DERKSEN D and IZZO D. Shadow neural radiance fields for multi-view satellite photogrammetry[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, USA, 2021: 1152–1161. doi: 10.1109/CVPRW53098.2021.00126.
    [17] MARÍ R, FACCIOLO G, and EHRET T. Multi-date earth observation NeRF: The detail is in the shadows[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 2035–2045. doi: 10.1109/CVPRW59228.2023.00197.
    [18] QU Yingjie and DENG Fei. Sat-mesh: Learning neural implicit surfaces for multi-view satellite reconstruction[J]. Remote Sensing, 2023, 15(17): 4297. doi: 10.3390/rs15174297.
    [19] MARTIN-BRUALLA R, RADWAN N, SAJJADI M S M, et al. Nerf in the wild: Neural radiance fields for unconstrained photo collections[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 7206–7215. doi: 10.1109/CVPR46437.2021.00713.
    [20] SUN Cheng, SUN Min, and CHEN H T. Improved direct voxel grid optimization for radiance fields reconstruction[J]. arXiv preprint arXiv: 2206.05085, 2022. doi: 10.48550/arXiv.2206.05085.
    [21] CHEN Anpei, XU Zexiang, GEIGER A, et al. TensoRF: Tensorial radiance fields[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 333–350. doi: 10.1007/978-3-031-19824-3_20.
    [22] MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM Transactions on Graphics, 2022, 41(4): 102. doi: 10.1145/3528223.3530127.
    [23] XIE Songlin, ZHANG Lei, JEON G, et al. Remote sensing neural radiance fields for multi-view satellite photogrammetry[J]. Remote Sensing, 2023, 15(15): 3808. doi: 10.3390/rs15153808.
    [24] ZHANG Tongtong and LI Yuanxiang. Fast satellite tensorial radiance field for multi-date satellite imagery of large size[J]. arXiv preprint arXiv: 2309.11767, 2023. doi: 10.48550/arXiv.2309.11767.
    [25] ROESSLE B, BARRON J T, MILDENHALL B, et al. Dense depth priors for neural radiance fields from sparse input views[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12882–12891. doi: 10.1109/CVPR52688.2022.01255.
    [26] GABLEMAN M and KAK A. Incorporating season and solar specificity into renderings made by a NeRF architecture using satellite images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4348–4365. doi: 10.1109/TPAMI.2024.3355069.
    [27] REMATAS K, LIU A, SRINIVASAN P, et al. Urban radiance fields[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12922–12932. doi: 10.1109/CVPR52688.2022.01259.
    [28] TURKI H, RAMANAN D, and SATYANARAYANAN M. Mega-NeRF: Scalable construction of large-scale NeRFs for virtual fly-throughs[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 12912–12921. doi: 10.1109/CVPR52688.2022.01258.
    [29] HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
    [30] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]. The 38th International Conference on Machine Learning, 2021: 8748–8763.
    [31] YANG Jianing, CHEN Xuweiyi, QIAN Shengyi, et al. LLM-grounder: Open-vocabulary 3D visual grounding with large language model as an agent[J]. arXiv preprint arXiv: 2309.12311, 2023. doi: 10.48550/arXiv.2309.12311.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  612
  • HTML全文浏览量:  280
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-13
  • 网络出版日期:  2024-05-17
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回