Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift
-
摘要: 无源智能反射面在增强无线通信系统和提高物理层安全方面极具潜力,但是其存在严重的“双衰落”和半区域覆盖的缺点。为此,该文研究了一种有源同时反射和透射智能反射面(STAR-RIS),并在考虑反射和透射相移互耦合条件下,建立一个联合优化基站波束和有源STAR-RIS波束的安全能效最大化问题。为求解所形成的非凸优化问题,利用连续凸近似、罚函数法、半正定松弛、交替优化技术将原问题转化为凸问题,并提出一种基于惩罚对偶分解算法。仿真结果验证了该文所提算法的有效性。Abstract: Passive intelligent reflecting surfaces hold great potential in enhancing wireless communication systems and improving physical layer security, but they suffer from significant drawbacks such as “double fading” and partial coverage. Therefore, an active Simultaneously Transmitting And Reflecting Reconfigurable Intelligent Surface (STAR-RIS) is conducted in this paper. Considering the coupling between reflection and transmission phase shifts, a joint optimization problem for maximizing the security energy efficiency of base station beams and active STAR-RIS beams is formulated. To solve the resulting non-convex optimization problem, continuous convex approximation, penalty function method, semi-definite relaxation, and alternating optimization techniques are employed to transform the original problem into a convex one. Additionally, a penalty dual decomposition algorithm is proposed. Simulation results validate the effectiveness of the algorithm proposed in this paper.
-
1. 引言
相比于传统全球定位系统(Global Positing System, GPS)信号,GPS现代化卫星具有更好的信号相关特性、更大的信号功率、更妥善的导航电文结构、更高的定位精度以及更强的抗干扰能力[1]。特别是在GPS现代化建设第3阶段中,如表1,将通过发射Block III卫星而增加新型民用L1C信号[1]。为了优先保障军事应用,在保留平时M码信号进行全球覆盖性发射这一思路的基础上,增加了在必要时通过高增益天线定向地产生高功率点波束发射[1]。美国于2018年底发射第1颗GPS III卫星,继Galileo和北斗全球卫星导航系统(BeiDou System, BDS)后,GPS首次在轨播发复用二进制偏移载波(Multiplexed Binary Offset Carrier, MBOC)调制中经典的时分复用二进制偏移载波(Time Multiplexed Binary Offset Carrier, TMBOC)调制信号[2-5],全球定位系统II代(Global Positing System II, GPS II)采用正交相移键控(Quadrature Phase Shift Keying, QPSK)调制以及相干自适应副载波调制(Coherent Adaptive Subcarrier Modulation, CASM)复用方式,GPS III代复用方式尚未公开。2019年8月,第2颗GPS III卫星成功发射,标志着GPS现代化第3阶段更向前推进一步。
表 1 GPS L1 信号分量系统 GPS III GPS II 参考 复用方式/分量 未公开 QPSK CASM C/A √ √ √ IS-GPS-200J(2018) L1Cd √ – – IS-GPS-800E(2018) L1Cp √ – – IS-GPS-800E(2018) P(Y) √ √ √ IS-GPS-200J(2018) M √ – √ Marquis and Reigh(2015) 当前,关于GPS III信号的系统官方文件尚未全部公布,GPS III实际播发信号的结构和性能亟需研究。德国宇航中心的Steffen Thoelert团队对GPS III首星从频谱和星座图进行了初步分析,中国电子科技集团54研究所也做了类似的工作,对GPS III信号结构的深入研究还有很大的空间。国家授时信号质量评估团队在完成上述工作的同时,参考目前已公开的全球卫星导航系统(Global Navigation Satellite System, GNSS)控制接口文档(Interface Control Document, ICD)评估指标项为模板,更深入地进行了实际播发信号的分析工作,给出了当前信号质量评估结果,弥补了该项空白。本文作者研究团队基于中国科学院国家授时中心的GNSS空间信号质量评估系统,对GPS III卫星进行了多次监测以及数据采集、分析比对工作。对L1信号的调制方式,尤其是L1M分量载波相位“滑动”现象进行了验证,并利用L1C/A解析出M码序列,完成了L1C/A, L1Cd, L1Cp以及L1M信号分量的信号质量评估工作,对GPS III信号的S曲线过0点偏差、各信号分量功率配比以及L1M信号的相关幅值做了定量分析。本结果可支撑后续关于GPS III信号的信号质量评估分析工作,也可为北斗信号质量的设计提供参考。
2. 信号分析处理流程
如图1,本文信号分析处理主要包括信号预处理、信号现象分析以及信号质量评估3部分。首先利用大口径高增益天线进行多次数据采集,将数据送入软件接收机,进行信号捕获、跟踪和解调解扩完成数据预处理。
信号现象分析主要针对基带信号同相/正交(In-phase/Quadrature, I/Q)频谱分布以及L1信号星座图“滑动”现象,通过对不同滤波带宽设置下的星座图幅值和相位采取数理统计,初步验证了L1信号载波相位“时变”主要源于L1M信号。最后在信号质量评估阶段,利用L1C/A解析出M伪码序列,完成了多项信号质量评估指标的分析,其中信号功率配比关系指标项也佐证了“L1信号载波相位滑动现象主要源于L1M信号”。
3. GPS III卫星信号结构分析
3.1 L1信号I/Q频谱分析
功率谱反映了信号功率随着频率的变化情况,是分析卫星导航信号结构的重要手段,可直观获得卫星信号发射带宽、调制方式以及中心频率等特征,也可观测信号是否有明显畸变。采用经典的Welch周期图法[6]绘制功率谱。如图2所示,与GPS II信号相比,GPS III信号一个最显著的特征是增加MBOC调制的L1C新型民用信号分量。为了进一步研究不同信号分量间的相位关系,使用L1C/A伪码分别对GPS L1射频信号进行捕获、跟踪等接收处理后得到GPS II以及GPS III L1频点基带信号,在载波相位跟踪精准的前提下,一般基带信号为理想的正交调制,采取同样的方法对导航信号I/Q支路信号功率谱分布进行分析。如图3—图5所示,表2统计了GPS L1频点信号I/Q支路信号分量构成。
表 2 GPS L1 信号I/Q支路调制方式统计分量/系统 GPS III GPS II 未知 QPSK CASM 同相 BPSK(1) BOC(10,5) BPSK(1) BPSK(1)+ BOC(10,5) 正交 BOC(1,1)+TMBOC(6,1,4/33)+P(Y) BPSK(10) BPSK(10) 由图3可得:GPS III信号同相支路由L1C/A与L1M构成,正交支路中除了明显的L1C, P(Y)功率谱包络外,也出现了中心频率位于10 MHz,单边带宽5 MHz的信号功率谱,类似L1M功率谱特性,该现象首次出现在GPS信号中。I/Q频谱分布统计结果表明信号分量呈递增趋势,相比于传统的二进制相移键控(Binary Phase Shift Keying, BPSK)调制,二进制偏移载波(Binary Offset Carrier, BOC)调制逐渐占据主导。特别地,II代CASM复用方式下,信号明显向前向后兼容。
3.2 L1信号调制矢量分析
星座图能直观地反映信号分量的幅度大小及分量间相位对应关系。导航信号一般多采用正交调制,不同支路的伪码相位关系近似正交,利用星座图可以直观地判断导航信号的分量组成个数、信号分量间相位相对关系、信号分量间功率配比以及信号复用调制方式等信息[7]。如图6和图7所示,分别绘制GPS III和GPS II L1频点星座图,与GPS II相比,GPS III星座图包含8个未分布在单位圆上星座点,为非恒包络调制。导航信号自星上发射至地面接收过程中路径损耗以及大气衰落十分严重,为了保证地面接收端足够的接收功率,对星上发射机的发射功率提出了更高的需求[8]。为了使星上高功率放大器工作在非线性饱和区,以达到较高的发射效率,提出了合成信号恒包络特性的需求。GPS III L1信号明显未采用传统的恒包络调制方式,推测GPS在高功率放大器技术上有了明显的提升,规避了恒包络发射牺牲发射效率的弊端。
对GPS III进行卫星俯仰角变化范围为14°~36°,约6.5 h的全弧段监测。选取连续5个时间段(每间隔20 min一组,每组采集时常为10 s)数据进行分析处理,如图8给出其中3个时间段的星座图,在连续长时间分析中,发现L1信号星座图处于“时变”中,结合频谱分布中I/Q支路同时出现L1M调制特征频谱,对该现象原因进行深入分析。
选取主瓣带宽(单边带宽7 MHz)和发射带宽(单边带宽30 MHz)两种滤波器带宽进行滤波后绘制星座图,由于L1M信号为BOC(10, 5)调制,信号主能量被搬移至距中频10 MHz处,主瓣带宽内星座图主要是L1C/A, L1C, P(Y )以及三者的交调分量占主导,而发射带宽内则包含L1M信号在内的所有分量能量的调制特性。图8绘制出同时刻发射带宽和主瓣带宽条件下的星座图。从星座图变化趋势来看,发射带宽条件下为非恒包络调制,且信号间相位关系处于变化中,主瓣带宽内信号相位则相对恒定,为恒包络QPSK调制。
为了进一步验证,采取图9所示星座图表征方式,对不同时刻主瓣带宽内信号星座图的星座点幅值和相位进行统计分析。
表3中同时刻条件下,主瓣带宽内4个星座点的幅度差异仅为0.01,不同时刻条件下,信号相位变化规律保持一致,佐证了L1C/A, P(Y )以及L1C信号分量间功率配比以及相位关系恒定,为恒包络QPSK调制。L1M调制方式为BOC(10, 5),主瓣带宽内信号能量分布较少,推测L1信号星座图相位滑动现象主要是由L1M引起的,且L1M载波相位一直在“时变”。
表 3 主瓣带宽内星座点幅度相位统计结果时间 星座点 12:00 12:20 12:40 13:00 13:20 幅值 A 0.57 0.53 0.49 0.48 0.49 B 0.56 0.53 0.49 0.46 0.48 C 0.56 0.53 0.49 0.47 0.47 D 0.57 0.52 0.48 0.48 0.48 相位 A 59.80 60.90 63.23 61.73 61.23 B 115.38 116.22 115.55 117.00 116.52 C 242.08 241.92 241.42 240.62 241.53 D 297.23 297.59 295.54 295.54 295.32 3.3 L1信号功率配比关系
假设信号失真引入的相关功率损失较小可忽略,基于跟踪稳定后的即时支路输出结果,可准确求解已解析信号分量的功率配比[9]。P(Y ), L1C以及L1M分量共同调制在正交支路上,由于有两路授权信号在正交支路上,解码误码率不能保障,本文对P(Y )的功率未作分析。表4为GPS III L1频点所有可以稳定跟踪的信号分量的功率占比。
表 4 不同时刻L1频点各信号分量功率配比统计表信号分量 L1Cd L1Cp L1C/A L1M 数据1 1.00 2.70 2.35 4.67 数据2 1:00 2.68 2.36 6.75 数据3 1:00 2.73 2.39 6.78 数据4 1:00 2.74 2.40 4.66 4. L1频点授权信号解析
4.1 L1M 授权信号解析
采用逐码片相关法以及三环跟踪法[10,11]可解析L1M授权信号的伪码序列。该方法原理如下:
本地生成长度为一个码片宽度
TM 的BOC(10, 5)信号子载波序列cl(n), n=1,2,···,N (1) 其中,
N 为一个L1M信号伪码宽度内的子载波采样点数。假设时长为
TM 的同相支路信号表达式为sI(n),n=1,2,···,NsI(n)=βCAdCAcCA(n)+βMdMcM(n)} (2) 其中,
βCA 和βM 分别为L1C/A和L1M信号的幅度因子,dCA 为L1C/A信号电文符号,dM 为L1M信号伪码符号和电文的乘积,TM 为一个L1M伪码周期。默认短时期内电文未发生翻转,即
dM 为1,利用本地信号cl(n) 和sI(n) 每个采样点进行相乘,得到cl(n)⋅sI(n)=N∑n=1cl(n)×N∑n=1[βCAdCAcCA(n)+βMdMcM(n)]=N∑n=1(βCAdCAcl(n)cCA(n))+N∑n=1(βMdMcl(n)cM(n)) (3) 如图10所示,由于L1C/A信号单个伪码宽度内包含4个完整的L1M信号子载波码片,根据伪随机噪声码的平衡性式(3)可改写为
cl(n)⋅sI(n)=N∑n=1(βMdMcl(n)cM(n)) (4) 通过式(4)可得L1M伪码符号最佳判决门限为0,则取符号函数可直接判断L1M信号的伪码符号。为验证所解析L1M伪码的正确性,对解析出L1M伪码序列采用峰跳法[12]进行跟踪,如图11跟踪结果所示,载波环路和码环路均跟踪稳定,由于默认电文未发生翻转,所以跟踪结果呈单极性。
对解析出的L1M授权信号分别与本地接收信号的同相/正交支路进行互相关操作,如图12和图13,同相/正交支路均有明显的相关曲线,均符合BOC(10, 5)信号调制特征。
4.2 信号质量评估-相关特性分析
信号失真带来的伪距误差,可直接体现为相关函数的异常。利用相关曲线,可以评估由信道带限和失真等因素引起的相关功率损耗及其对导航性能的影响[12-14]。理想情况下,接收机码跟踪环鉴相曲线(S曲线)的过0点(即码环的锁定点)应位于码跟踪误差为0处,而实际上由于信道传输失真、多径等影响会引起码环锁定存在偏差,由于用户接收机设置带宽和相关器间隔之间的差异,会造成严重的测距误差[11]。S曲线过0点偏差(S-Curve Bias, SCB)则反映了码环的锁定点在不同相关器间隔情况下的测距表现。采用典型的非相干超前—滞后鉴相器为例,设其相关器的超前—滞后间距为δ, S曲线的表达式为
Scurve(ε,δ)=|CCF(ε−δ2)|2−|CCF(ε+δ2)|2 (5) 锁定点偏差
εbias(δ) 满足Scurve(εbias(δ),δ)=0 (6) 本文中软件接收机中滤波器带宽设置为40 MHz,采样率为250 MHz,分析时长为稳定跟踪后2 s,为了充分消除信号间互干扰对测距偏差的影响,各分量的S曲线是由100周期S曲线累加平均所得。
δmax 定义为不同调制方式下相关间隔δ 的最大取值,[0,δmax] 定义为不同调制方式下相关间隔δ 的取值范围[4]dmax[chips]={1.54mn−1,BOC(m,n)1.5,BPSK(n) (7) 如表5所示,统计各支路信号相关间隔内SCB最大值。本次数据结果分析,由于L1Cp调制方式为高阶BOC调制,信号SCB为1.271 ns,其余支路均小于0.3 ns。其中授权信号L1M性能最优,达到了0.058 ns,测距性能明显优于其他信号分量。
表 5 L1信号SCB统计表信号分量 L1C/A L1Cd L1Cp L1M 最大相关间隔区(chip) <0.5 <0.5 <0.06 <0.21 SCB (ns) –0.129 –0.135 1.271 0.058 5. 结束语
本文对GPS III卫星的L1频点空间信号进行了长期监测以及分析。相比以往GPS信号,非恒包络调制首次出现在现代化GNSS中,且信号特性完好。推测GPS III卫星上高功率放大器有了新的突破,规避恒包络复用方法牺牲发射效率的缺陷,北斗全球系统B1频点为多信号分量恒包络合成,后续可在该方向有所突破。文献[1]中提到的GPS III设计M码在星上采取单独链路发射,在有需求时,GPS III 将采用高增益天线定向产生M码信号点波束发射理念,结合本文GPS III L1信号的载波相位滑动现象主要由L1M信号分量引起,推测L1M可能单独于其他信号分量,有利于军方的灵活调整。L1M功率占比明显大于L1Cd, L1Cp及L1C/A信号支路,S曲线过0点偏差更小,性能更优,信号设计优先考虑了军事应用,推测未来将以L1M信号作为主要的军用信号。中国科学院国家授时中心GNSS空间信号质量评估系统,将持监测GPS信号变化情况,进一步进行GPS III新卫星信号结构的推演以及长期信号质量评估工作。
-
1 基于PDD的能效最大化算法
初始化优化变量,收敛精度ε=10−3 重复 重复 求解问题式(17),获得wk 求解问题式(18),获得A 求解问题式(21),获得{θR,θT} 求解式(25)、式(26)和式(28),获得{⌣θR,⌣θT} 直到收敛 判断如果Δ≤ω,更新λi=λi+1ρ(⌣θi−θi),∀i 否则设置ρ=cρ 更新ω=0.9Δ 直到Δ≤ε,结束循环 -
[1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896. [2] 朱政宇, 宁梦珂, 孙钢灿, 等. 智能超表面辅助通信感知一体化系统研究综述[J]. 移动通信, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004.ZHU Zhengyu, NING Mengke, SUN Gangcan, et al. An overview of reconfigurable intelligent surface-assisted integrated sensing and communications[J]. Mobile Communications, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004. [3] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897. [4] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893. [5] KHOSHAFA M H, NGATCHED T M N, AHMED M H, et al. Active reconfigurable Intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters, 2021, 25(11): 3699–3703. doi: 10.1109/LCOMM.2021.3110714. [6] MA Yanan, LI Ming, LIU Yang, et al. Active reconfigurable intelligent surface for energy efficiency in MU-MISO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4103–4107. doi: 10.1109/TVT.2022.3221720. [7] GAO Ying, WU Qingqing, ZHANG Guangchi, et al. Beamforming optimization for active intelligent reflecting surface-aided SWIPT[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 362–378. doi: 10.1109/TWC.2022.3193845. [8] ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Beyond intelligent reflecting surfaces: Reflective-transmissive metasurface aided communications for full-dimensional coverage extension[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13905–13909. doi: 10.1109/TVT.2020.3024756. [9] LIU Yuanwei, MU Xidong, XU Jiaqi, et al. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021, 28(6): 102–109. doi: 10.1109/MWC.001.2100191. [10] LUO Hao, LV Lu, WU Qingqing, et al. Beamforming design for active IOS aided NOMA networks[J]. IEEE Wireless Communications Letters, 2022, 12(2): 282–286. doi: 10.1109/LWC.2022.3223906. [11] CAI Wenhao, LI Ming, LIU Yang, et al. Joint beamforming design for intelligent Omni surface assisted wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1281–1297. doi: 10.1109/TWC.2022.3203986. [12] MA Yanan, LI Ming, LIU Yang, et al. Optimization for reflection and transmission dual-functional active RIS-assisted systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5534–5548. doi: 10.1109/TCOMM.2023.3286453. [13] SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924 214. [14] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685. [15] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721. [16] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780. [17] DONG Limeng, WANG Huiming, and BAI Jiale. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2181–2186. doi: 10.1109/TVT.2021.3135498. [18] DONG Limeng and YAN Wanyu. Active reconfigurable intelligent surface (RIS) aided secure wireless transmission under a shared power source between transmitter and RIS[C]. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2022: 996–1000. doi: 10.1109/WCSP55476.2022.10039260. [19] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 2021, 25(11): 3498–3502. doi: 10.1109/LCOMM.2021.3109164. [20] LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334. [21] GUO Yuan, LIU Yang, WU Qingqing, et al. Enhanced secure communication via novel double-faced active RIS[J]. IEEE Transactions on Communications, 2023, 71(6): 3497–3512. doi: 10.1109/TCOMM.2023.3250454. [22] LIU Yuanwei, MU Xidong, SCHOBER R, et al. Simultaneously transmitting and reflecting (STAR)-RISs: A coupled phase-shift model[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 2840–2845. doi: 10.1109/ICC45855.2022.9838767. [23] WANG Zhaolin, MU Xidong, LIU Yuanwei, et al. Coupled phase-shift STAR-RISs: A general optimization framework[J]. IEEE Wireless Communications Letters, 2023, 12(2): 207–211. doi: 10.1109/LWC.2022.3219020. [24] ZHANG Zheng, WANG Zhaolin, LIU Yuanwei, et al. Security enhancement for coupled phase-shift STAR-RIS networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8210–8215. doi: 10.1109/TVT.2023.3243545. [25] ZHAO Nan, LI Dongdong, LIU Minqian, et al. Secure transmission via joint precoding optimization for downlink MISO NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7603–7615. doi: 10.1109/TVT.2019.2920144. [26] 徐勇军, 徐然, 周继华, 等. 基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508.XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust resource allocation algorithm in MU-MISO backscatter communication systems with eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508. [27] ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617. 期刊类型引用(3)
1. 刘义,李运宏,董政,张凯. 基于调制域增强副载波剥离的GPS M码授权码流提取方法. 海军航空大学学报. 2023(02): 167-172+178 . 百度学术
2. 杨倩倩,贺成艳,王鹏博,韩子彬. 传输通道相位失真对非恒包络信号质量的影响分析. 系统工程与电子技术. 2023(06): 1597-1605 . 百度学术
3. 张强,周一飞,王茸,谭理庆. GPS Ⅲ卫星观测数据质量分析. 现代导航. 2023(03): 162-171 . 百度学术
其他类型引用(7)
-