高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信

郝万明 曾齐 王芳 杨守义

郝万明, 曾齐, 王芳, 杨守义. 耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信[J]. 电子与信息学报, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149
引用本文: 郝万明, 曾齐, 王芳, 杨守义. 耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信[J]. 电子与信息学报, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149
HAO Wanming, ZENG Qi, WANG Fang, YANG Shouyi. Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149
Citation: HAO Wanming, ZENG Qi, WANG Fang, YANG Shouyi. Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544-3552. doi: 10.11999/JEIT240149

耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信

doi: 10.11999/JEIT240149
基金项目: 国家自然科学基金(62101499),东南大学移动通信全国重点实验室开放研究基金(2024D12)
详细信息
    作者简介:

    郝万明:男,副教授,研究方向为毫米波通信,太赫兹通信,大规模MIMO技术,物理层安全技术,智能超表面技术等

    曾齐:男,硕士生,研究方向为物理层安全技术,智能反射面技术等

    王芳:女,副教授,研究方向为宽带无线通信,认知无线电技术等

    杨守义:男,教授,研究方向为无线移动通信、移动云计算等

    通讯作者:

    郝万明 iewmhao@zzu.edu.cn

  • 中图分类号: TN92

Active Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface Assisted Multi-user Security Communication with Coupled Phase Shift

Funds: The National Natural Science Foundation of China (62101499), The Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2024D12)
  • 摘要: 无源智能反射面在增强无线通信系统和提高物理层安全方面极具潜力,但是其存在严重的“双衰落”和半区域覆盖的缺点。为此,该文研究了一种有源同时反射和透射智能反射面(STAR-RIS),并在考虑反射和透射相移互耦合条件下,建立一个联合优化基站波束和有源STAR-RIS波束的安全能效最大化问题。为求解所形成的非凸优化问题,利用连续凸近似、罚函数法、半正定松弛、交替优化技术将原问题转化为凸问题,并提出一种基于惩罚对偶分解算法。仿真结果验证了该文所提算法的有效性。
  • 图  1  系统模型

    图  2  系统能效随迭代次数变化

    图  3  系统能效与总功率的关系

    图  4  系统能效与功率分配系数的关系

    图  5  系统能效与STAR-RIS单元数的关系

    图  6  系统能效与基站到STAR-RIS距离的关系

    1  基于PDD的能效最大化算法

     初始化优化变量,收敛精度$\varepsilon = {10^{ - 3}}$
     重复
      重复
     求解问题式(17),获得${{\boldsymbol{w}}_k}$
     求解问题式(18),获得${\boldsymbol{A}}$
     求解问题式(21),获得$\{ {{\boldsymbol{\theta}} _{\text{R}}},{{\boldsymbol{\theta}} _{\text{T}}}\} $
     求解式(25)、式(26)和式(28),获得$ \{ {\mathop{{\boldsymbol{\theta}} }\limits^{\smile} }_{\text{R}} ,{\mathop{{\boldsymbol{\theta}} }\limits^{\smile} } _{\text{T}}\} $
      直到收敛
     判断如果$ \varDelta \le \omega $,更新${{\boldsymbol{\lambda}} _i} = {{\boldsymbol{\lambda}} _i} + \dfrac{1}{\rho }({{\mathop {{\boldsymbol{\theta}} }\limits^{\smile}} _i} - {{ {{\boldsymbol{\theta}} }}_i}),\forall i$
     否则设置$\rho = {\text{c}}\rho $
     更新$\omega = 0.9\varDelta $
     直到$\varDelta \le \varepsilon $,结束循环
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2] 朱政宇, 宁梦珂, 孙钢灿, 等. 智能超表面辅助通信感知一体化系统研究综述[J]. 移动通信, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004.

    ZHU Zhengyu, NING Mengke, SUN Gangcan, et al. An overview of reconfigurable intelligent surface-assisted integrated sensing and communications[J]. Mobile Communications, 2023, 47(11): 51–58. doi: 10.3969/j.issn.1006-1010.20230924-0004.
    [3] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [4] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [5] KHOSHAFA M H, NGATCHED T M N, AHMED M H, et al. Active reconfigurable Intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters, 2021, 25(11): 3699–3703. doi: 10.1109/LCOMM.2021.3110714.
    [6] MA Yanan, LI Ming, LIU Yang, et al. Active reconfigurable intelligent surface for energy efficiency in MU-MISO systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4103–4107. doi: 10.1109/TVT.2022.3221720.
    [7] GAO Ying, WU Qingqing, ZHANG Guangchi, et al. Beamforming optimization for active intelligent reflecting surface-aided SWIPT[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 362–378. doi: 10.1109/TWC.2022.3193845.
    [8] ZHANG Shuhang, ZHANG Hongliang, DI Boya, et al. Beyond intelligent reflecting surfaces: Reflective-transmissive metasurface aided communications for full-dimensional coverage extension[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13905–13909. doi: 10.1109/TVT.2020.3024756.
    [9] LIU Yuanwei, MU Xidong, XU Jiaqi, et al. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021, 28(6): 102–109. doi: 10.1109/MWC.001.2100191.
    [10] LUO Hao, LV Lu, WU Qingqing, et al. Beamforming design for active IOS aided NOMA networks[J]. IEEE Wireless Communications Letters, 2022, 12(2): 282–286. doi: 10.1109/LWC.2022.3223906.
    [11] CAI Wenhao, LI Ming, LIU Yang, et al. Joint beamforming design for intelligent Omni surface assisted wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 1281–1297. doi: 10.1109/TWC.2022.3203986.
    [12] MA Yanan, LI Ming, LIU Yang, et al. Optimization for reflection and transmission dual-functional active RIS-assisted systems[J]. IEEE Transactions on Communications, 2023, 71(9): 5534–5548. doi: 10.1109/TCOMM.2023.3286453.
    [13] SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924 214.
    [14] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [15] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721.
    [16] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780.
    [17] DONG Limeng, WANG Huiming, and BAI Jiale. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2181–2186. doi: 10.1109/TVT.2021.3135498.
    [18] DONG Limeng and YAN Wanyu. Active reconfigurable intelligent surface (RIS) aided secure wireless transmission under a shared power source between transmitter and RIS[C]. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2022: 996–1000. doi: 10.1109/WCSP55476.2022.10039260.
    [19] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Simultaneous transmission and reflection reconfigurable intelligent surface assisted secrecy MISO networks[J]. IEEE Communications Letters, 2021, 25(11): 3498–3502. doi: 10.1109/LCOMM.2021.3109164.
    [20] LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334.
    [21] GUO Yuan, LIU Yang, WU Qingqing, et al. Enhanced secure communication via novel double-faced active RIS[J]. IEEE Transactions on Communications, 2023, 71(6): 3497–3512. doi: 10.1109/TCOMM.2023.3250454.
    [22] LIU Yuanwei, MU Xidong, SCHOBER R, et al. Simultaneously transmitting and reflecting (STAR)-RISs: A coupled phase-shift model[C]. ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 2840–2845. doi: 10.1109/ICC45855.2022.9838767.
    [23] WANG Zhaolin, MU Xidong, LIU Yuanwei, et al. Coupled phase-shift STAR-RISs: A general optimization framework[J]. IEEE Wireless Communications Letters, 2023, 12(2): 207–211. doi: 10.1109/LWC.2022.3219020.
    [24] ZHANG Zheng, WANG Zhaolin, LIU Yuanwei, et al. Security enhancement for coupled phase-shift STAR-RIS networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8210–8215. doi: 10.1109/TVT.2023.3243545.
    [25] ZHAO Nan, LI Dongdong, LIU Minqian, et al. Secure transmission via joint precoding optimization for downlink MISO NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7603–7615. doi: 10.1109/TVT.2019.2920144.
    [26] 徐勇军, 徐然, 周继华, 等. 基于用户窃听的MU-MISO反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508.

    XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust resource allocation algorithm in MU-MISO backscatter communication systems with eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204–212. doi: 10.11999/JEIT221508.
    [27] ZHAO Nan, LI Yanxin, ZHANG Shun, et al. Security enhancement for NOMA-UAV networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3994–4005. doi: 10.1109/TVT.2020.2972617.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  106
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-05-14
  • 网络出版日期:  2024-05-24
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回