高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对数正态纹理距离相关性辅助的海杂波背景雷达目标检测方法

薛健 郭妍

薛健, 郭妍. 对数正态纹理距离相关性辅助的海杂波背景雷达目标检测方法[J]. 电子与信息学报, 2024, 46(9): 3611-3618. doi: 10.11999/JEIT240123
引用本文: 薛健, 郭妍. 对数正态纹理距离相关性辅助的海杂波背景雷达目标检测方法[J]. 电子与信息学报, 2024, 46(9): 3611-3618. doi: 10.11999/JEIT240123
XUE Jian, GUO Yan. Radar Target Detection Aided by Log-Normal Texture Range Correlation in Sea Clutter[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3611-3618. doi: 10.11999/JEIT240123
Citation: XUE Jian, GUO Yan. Radar Target Detection Aided by Log-Normal Texture Range Correlation in Sea Clutter[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3611-3618. doi: 10.11999/JEIT240123

对数正态纹理距离相关性辅助的海杂波背景雷达目标检测方法

doi: 10.11999/JEIT240123
基金项目: 国家自然科学基金(62201455),陕西省科学技术协会青年人才托举计划(20230112)
详细信息
    作者简介:

    薛健:男,副教授,研究方向为雷达杂波抑制、雷达目标检测分类识别等

    郭妍:女,硕士生,研究方向为雷达杂波特性感知及目标检测

    通讯作者:

    薛健 jxue@xupt.edu.cn

  • 中图分类号: TN959.72

Radar Target Detection Aided by Log-Normal Texture Range Correlation in Sea Clutter

Funds: The National Natural Science Foundation of China (62201455), The Young Talent Fund of Association for Science and Technology in Shaanxi, China (20230112)
  • 摘要: 传统的海杂波背景雷达目标自适应检测器通常假设杂波纹理在距离维上独立同分布,忽略了纹理在距离维的相关性信息。为了改善纹理距离相关海杂波环境下雷达目标自适应检测性能,该文首先将复合高斯海杂波的纹理分量建模为对数正态随机变量,然后基于广义似然比检验提出一种基于均匀对数正态纹理的广义似然比检测器。提出的雷达目标自适应检测器融合了纹理的先验分布知识及其在距离维的相关性信息。仿真和所用实测数据表明,与已有检测方法相比,所提方法对纹理距离相关海杂波背景下的雷达目标具有更高的检测概率。
  • 图  1  不同数量纹理辅助数据下检测器检测概率曲线

    图  2  不同参考单元数量下检测器检测概率曲线

    图  3  不同形状参数下检测器检测概率曲线

    图  4  实测海杂波数据功率图及纹理距离相关系数图

    图  5  基于CFC17_011.01的不同参考单元数量下检检测概率曲线

    图  6  基于TFA10_007.02的不同参考单元数量下检检测概率曲线

  • [1] SHUI Penglang, LIU Ming, and XU Shuwen. Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. doi: 10.1109/TAES.2015.140109.
    [2] SHI Sainan and SHUI Penglang. Optimum coherent detection in homogenous K-distributed clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1477–1484. doi: 10.1049/iet-rsn.2015.0602.
    [3] 于涵, 水鹏朗, 施赛楠, 等. 复合高斯海杂波模型下最优相干检测进展[J]. 科技导报, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012.

    YU Han, SHUI Penglang, SHI Sainan, et al. Development of optimum coherent detection in compound-Gaussian sea clutter models[J]. Science & Technology Review, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012.
    [4] 石星宇, 许述文, 王晓峰, 等. 复合高斯杂波下距离扩展目标斜对称自适应子空间检测器[J]. 信号处理, 2023, 39(6): 1036–1046. doi: 10.16798/j.issn.1003-0530.2023.06.009.

    SHI Xingyu, XU Shuwen, WANG Xiaofeng, et al. Persymmetric adaptive subspace detectors for range-spread targets in compound-Gaussian clutter[J]. Journal of Signal Processing, 2023, 39(6): 1036–1046. doi: 10.16798/j.issn.1003-0530.2023.06.009.
    [5] 薛健, 朱圆玲, 潘美艳, 等. 基于Wald检验的海面雷达目标贝叶斯检测方法[J]. 西安邮电大学学报, 2023, 27(3): 30–38. doi: 10.13682/j.issn.2095-6533.2022.03.005.

    XUE Jian, ZHU Yuanling, PAN Meiyan, et al. Wald-based Bayesian detection for sea marine targets[J]. Journal of Xi’an University of Posts and Telecommunications, 2023, 27(3): 30–38. doi: 10.13682/j.issn.2095-6533.2022.03.005.
    [6] XUE Jian, MA Manshan, LIU Jun, et al. Wald-and Rao-based detection for maritime radar targets in sea clutter with lognormal texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5119709. doi: 10.1109/TGRS.2022.3217615.
    [7] WARD K D. Compound representation of high resolution sea clutter[J]. Electronics Letters, 1981, 17(16): 561–563. doi: 10.1049/el:19810394.
    [8] JAKEMAN E and PUSEY P. A model for non-Rayleigh sea echo[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(6): 806–814. doi: 10.1109/TAP.1976.1141451.
    [9] YU Han, SHUI Penglang, and LU Kai. Outlier-robust tri-percentile parameter estimation of K-distributions[J]. Signal Processing, 2021, 181: 107906. doi: 10.1016/j.sigpro.2020.107906.
    [10] 于涵, 水鹏朗, 施赛楠, 等. 广义Pareto分布海杂波模型参数的组合双分位点估计方法[J]. 电子与信息学报, 2019, 41(12): 2836–2843. doi: 10.11999/JEIT190148.

    YU Han, SHUI Penglang, SHI Sainan, et al. Combined bipercentile parameter estimation of generalized pareto distributed sea clutter model[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2836–2843. doi: 10.11999/JEIT190148.
    [11] SHUI Penglang, YU Han, SHI Lixiang, et al. Explicit bipercentile parameter estimation of compound‐Gaussian clutter with inverse gamma distributed texture[J]. IET Radar, Sonar & Navigation, 2018, 12(2): 202–208. doi: 10.1049/iet-rsn.2017.0174.
    [12] 水鹏朗, 田超, 封天. 逆高斯纹理复合高斯杂波对异常样本稳健的三分位点估计方法[J]. 电子与信息学报, 2023, 45(2): 542–549. doi: 10.11999/JEIT211483.

    SHUI Penglang, TIAN Chao, and FENG Tian. Outlier-robust tri-percentile parameter estimation method of compound-Gaussian clutter with inverse Gaussian textures[J]. Journal of Electronics & Information Technology, 2023, 45(2): 542–549. doi: 10.11999/JEIT211483.
    [13] LIU Weijian, LIU Jun, LIU Tao, et al. Detector design and performance analysis for target detection in subspace interference[J]. IEEE Signal Processing Letters, 2023, 30: 618–622. doi: 10.1109/LSP.2023.3270080.
    [14] LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8.
    [15] JAY E, OVARLEZ J P, DECLERCQ D, et al. BORD: Bayesian optimum radar detector[J]. Signal Processing, 2003, 83(6): 1151–1162. doi: 10.1016/S0165-1684(03)00034-3.
    [16] SANGSTON K J, GINI F, and GRECO M S. Coherent radar target detection in heavy-tailed compound-gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64–77. doi: 10.1109/TAES.2012.6129621.
    [17] CHEN Sijia, KONG Lingjiang, and YANG Jianyu. Adaptive detection in compound-Gaussian clutter with inverse Gaussian texture[J]. Progress in Electromagnetics Research M, 2013, 28: 157–167. doi: 10.2528/PIERM12121209.
    [18] XUE Jian, XU Shuwen, and SHUI Penglang. Near-optimum coherent CFAR detection of radar targets in compound-Gaussian clutter with inverse Gaussian texture[J]. Signal Processing, 2020, 166: 107236. doi: 10.1016/j.sigpro.2019.07.029.
    [19] 施赛楠, 水鹏朗, 刘明. 基于复合高斯杂波纹理结构的相干检测[J]. 电子与信息学报, 2016, 38(8): 1969–1976. doi: 10.11999/JEIT151194.

    SHI Sainan, SHUI Penglang, and LIU Ming. Coherent detection based on texture structure in compound-gaussian clutter[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1969–1976. doi: 10.11999/JEIT151194.
    [20] 施赛楠, 水鹏朗, 杨春娇, 等. 基于逆高斯纹理空间相关性的雷达目标检测[J]. 系统工程与电子技术, 2017, 39(10): 2215–2220. doi: 10.3969/j.issn.1001-506X.2017.10.09.

    SHI Sainan, SHUI Penglang, YANG Chunjiao, et al. Radar target detection based on spatial correlation of inverse-Gaussian texture[J]. Systems Engineering and Electronics, 2017, 39(10): 2215–2220. doi: 10.3969/j.issn.1001-506X.2017.10.09.
    [21] BARNARD T J and WEINER D D. Non-Gaussian clutter modeling with generalized spherically invariant random vectors[J]. IEEE Transactions on Signal Processing, 1996, 44(10): 2384–2390. doi: 10.1109/78.539023.
    [22] FENG Tian and SHUI Penglang. Outlier-robust tri-percentile parameter estimation of compound-Gaussian clutter with lognormal distributed texture[J]. Digital Signal Processing, 2022, 120: 103307. doi: 10.1016/j.dsp.2021.103307.
    [23] GINI F and GRECO M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82(12): 1847–1859. doi: 10.1016/S0165-1684(02)00315-8.
    [24] CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910.
    [25] 关键, 丁昊, 黄勇, 等. 实测海杂波数据空间相关性研究[J]. 电波科学学报, 2012, 27(5): 943–953. doi: 10.13443/j.cjors.2012.05.026.

    GUAN Jian, DING Hao, HUANG Yong, et al. Spatial correlation property with measured sea clutter data[J]. Chinese Journal of Radio Science, 2012, 27(5): 943–953. doi: 10.13443/j.cjors.2012.05.026.
  • 加载中
图(6)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  44
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-06-18
  • 网络出版日期:  2024-06-27
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回