Research on SAR Anti-jamming Imaging Method with Sparse CP-OFDM
-
摘要: 合成孔径雷达(SAR)是一种微波遥感成像雷达。近年来,随着数字化技术和射频电子技术的进步,针对SAR成像的干扰技术不断发展,基于数字射频存储技术(DRFM)的有源欺骗干扰更是给民用和军用的SAR成像系统带来了前所未有的考验。针对欺骗干扰开展SAR成像抗干扰研究,该文首先引入带有循环前缀的正交频分复用(CP-OFDM)波形进行正交波形分集设计与波形优化,获取具备优异自相关峰值旁瓣水平和互相关峰值水平的CP-OFDM宽带正交波形集;然后引入稀疏SAR成像理论,将CP-OFDM波形与稀疏SAR成像相结合,采用稀疏重构算法对CP-OFDM回波进行成像,实现具备抗欺骗干扰能力的高质量、高精度SAR成像。最终,开展了点目标、面目标以及基于真实数据模拟的复杂场景仿真实验,证明了所提方法可以将欺骗干扰产生的假目标完全去除,并对旁瓣进行抑制,实现高精度成像。
-
关键词:
- SAR抗干扰 /
- 带有循环前缀的正交频分复用(CP-OFDM) /
- 波形分集 /
- 稀疏SAR成像
Abstract: Synthetic Aperture Radar (SAR) is a microwave remote sensing imaging radar. In recent years, with the advancement of digital technology and radio frequency electronic technology, the jamming technology of SAR imaging is developed rapidly. The active jamming such as deception jamming based on Digital Radio Frequency Memory (DRFM) technology brings serious challenges to SAR imaging systems for civil use and military use. For research on SAR anti-jamming imaging against deception jamming, firstly, orthogonal waveform diversity design and waveform optimization is carried out for Orthogonal Frequency Division Multiplexing waveforms with Cyclic Prefixes (CP-OFDM). And the CP-OFDM wide band orthogonal waveform set with excellent autocorrelation peak sidelobe level and cross-correlation peak level is obtained. Then the sparse SAR imaging theory is introduced, which is combined with CP-OFDM. By using the sparse reconstruction method, the high-quality and high-precision imaging with anti-jamming capability is realized. Finally, simulation based on point targets, surface targets and real data is conducted, and it is proved that the method can completely remove the false targets generated by deception jamming, suppress sidelobes and achieve high-precision imaging. -
表 1 机载SAR成像参数
距离向参数 数值 单位 方位向参数 数值 单位 景中心斜距 30 km 等效雷达速度 250 m/s 高度 10 km 雷达工作频率 9.4 GHz 发射脉冲时宽 10 μs 合成孔径长度 850 m LFM信号调频率 10 MHz/μs 天线长度 1 m LFM信号带宽 100 MHz 脉冲重复时间 1.67 ms CP-OFDM信号带宽 120 MHz 斜视角 0 ° 距离向采样率 120 MHz 表 2 点目标和面目标成像指标
成像方式 点目标成像指标 面目标成像指标 ISR (dB) SDR (dB) 距离向PSLR(dB) 方位向PSLR(dB) ISR (dB) SDR (dB) LFM匹配滤波 0 5.95 –22.51 –19.84 0 –2.98 CP-OFDM匹配滤波 2.12 3.01 –13.61 –18.34 1.91 –5.85 稀疏CP-OFDM 5.45 $ - \infty $ –319.86 –321.72 3.95 –19.33 表 3 星载SAR雷达参数
距离向参数 数值 单位 方位向参数 数值 单位 景中心斜距 850 km 等效雷达速度 7100 m/s 高度 800 km 雷达工作频率 5.3 GHz 发射脉冲时宽 40 μs 合成孔径长度 4800 m LFM信号调频率 0.5 MHz/μs 天线长度 10 m LFM信号带宽 20 MHz 脉冲重复时间 588.24 μs CP-OFDM信号带宽 24 MHz 斜视角 0 度 距离向采样率 24 MHz 表 4 复杂场景干扰抑制比和信号失真比(dB)
成像方式 ISR SDR LFM匹配滤波 0 –11.96 CP-OFDM匹配滤波 0.15 –14.55 稀疏CP-OFDM 0.27 –19.50 -
[1] 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113. [2] FENG Qingqing, XU Huaping, WU Zhefeng, et al. Deceptive jamming suppression for SAR based on time-varying initial phase[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 4996–4999. doi: 10.1109/IGARSS.2016.7730303. [3] 崔国龙, 樊涛, 孔昱凯, 等. 机载雷达脉间波形参数伪随机跳变技术[J]. 雷达学报, 2022, 11(2): 213–226. doi: 10.12000/JR21189.CUI Guolong, FAN Tao, KONG Yukai, et al. Pseudo-random agility technology for interpulse waveform parameters in airborne radar[J]. Journal of Radars, 2022, 11(2): 213–226. doi: 10.12000/JR21189. [4] QIU Xiaoyan, ZHANG Tianjian, LI Shuangshuang, et al. SAR anti-jamming technique using orthogonal LFM-PC hybrid modulated signal[C]. 2018 China International SAR Symposium, Shanghai, China, 2018: 1–6. doi: 10.1109/SARS.2018.8551996. (查阅网上资料,标黄信息不确定,请确认) . [5] QIU Xiaoyan, WANG Pengfei, JIANG Jie, et al. Research on SAR anti-jamming technique based on orthogonal LFM-PC signals with adaptive initial phase[C]. 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 2021: 1–5. doi: 10.23919/CISS51089.2021.9652198. [6] ZHOU Kai, LI Dexin, SONG Xiaoji, et al. A method of improving the correlation properties of OFDM chirp waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1550–1554. doi: 10.1109/LGRS.2020.3003739. [7] ZHANG Tianxian and XIA Xianggen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394–404. doi: 10.1109/TGRS.2014.2322813. [8] ZHANG Tianxian, XIA Xianggen, and KONG Lingjiang. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4748–4759. doi: 10.1109/TSP.2014.2339796. [9] 赵金珊, 全英汇, 刘代军, 等. 基于遗传算法的OFDM雷达低旁瓣波形优化设计[J]. 航空兵器, 2021, 28(5): 76–80. doi: 10.12132/ISS N.1673-5048.2020.0258. doi: 10.12132/ISSN.1673-5048.2020.0258.ZHAO Jinshan, QUAN Yinghui, LIU Daijun, et al. Optimal design of OFDM radar low sidelobe waveform based on genetic algorithm[J]. Aero Weaponry, 2021, 28(5): 76–80. doi: 10.12132/ISS N.1673-5048.2020.0258. doi: 10.12132/ISSN.1673-5048.2020.0258. [10] GARMATYUK D and BRENNEMAN M. Adaptive multicarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780–3790. doi: 10.1109/TGRS.2011.2165546. [11] YU Xiang, FU Yaowen, NIE Lei, et al. IRCI-free CP-OFDM SAR signal processing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 50–54. doi: 10.1109/LGRS.2018.2867484. [12] ZHANG Bingchen, HONG Wen, and WU Yirong. Sparse microwave imaging: Principles and applications[J]. Science China Information Sciences, 2012, 55(8): 1722–1754. doi: 10.1007/s11432-012-4633-4. [13] XU Gang, ZHANG Bangjie, YU Hanwen, et al. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(4): 32–69. doi: 10.1109/MGR S.2022.3218801. doi: 10.1109/MGRS.2022.3218801. [14] GU Fufei, ZHANG Qun, LOU Hao, et al. Two-dimensional sparse synthetic aperture radar imaging method with stepped-frequency waveform[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096099. doi: 10.1117/1.JRS.9.096099. [15] ZHOU Kai, LI Dexin, HE Feng, et al. A sparse imaging method for frequency agile SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223616. doi: 10.1109/TGRS.2022.3151079. [16] ZHOU Feng, TAO Mingling, BAI Xueru, et al. Narrow-band interference suppression for SAR based on independent component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4952–4960. doi: 10.1109/TGRS.2013.2244605.