高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机-卫星辅助去蜂窝大规模MIMO系统中无人机部署和功率优化

赵海涛 刘颖 王琴 刘淼 朱洪波

赵海涛, 刘颖, 王琴, 刘淼, 朱洪波. 无人机-卫星辅助去蜂窝大规模MIMO系统中无人机部署和功率优化[J]. 电子与信息学报. doi: 10.11999/JEIT240058
引用本文: 赵海涛, 刘颖, 王琴, 刘淼, 朱洪波. 无人机-卫星辅助去蜂窝大规模MIMO系统中无人机部署和功率优化[J]. 电子与信息学报. doi: 10.11999/JEIT240058
ZHAO Haitao, LIU Ying, WANG Qin, LIU Miao, ZHU Hongbo. Jointly Optimized Deployment and Power for Unmanned Aerial Vehicle - Satellite Assisted Cell-Free Massive MIMO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240058
Citation: ZHAO Haitao, LIU Ying, WANG Qin, LIU Miao, ZHU Hongbo. Jointly Optimized Deployment and Power for Unmanned Aerial Vehicle - Satellite Assisted Cell-Free Massive MIMO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240058

无人机-卫星辅助去蜂窝大规模MIMO系统中无人机部署和功率优化

doi: 10.11999/JEIT240058
基金项目: 国家自然科学基金(U24B20187, 92367302, 62371250),江苏省前沿 引领技术基础研究(BK20212001),江苏省高等学校基础科学(自然科学)研究重大项目(24KJA510008),南京邮电大学自然科学基金国自孵化项目(NY224113)
详细信息
    作者简介:

    赵海涛:男,博士,教授,研究方向为物联网、车联网、空天地一体化网络

    刘颖:女,硕士,研究方向为空天地一体化中的资源分配

    王琴:女,博士,副研究员,研究方向为区块链与频谱共享、空天地海立体网络协同、5G/6G资源分配

    刘淼:男,博士,教授(助理),研究方向为车联网、物联网、无人机、5G

    朱洪波:男,博士,教授,研究方向为无线通信与物联网、下一代网络、无线通信与电磁兼容

    通讯作者:

    王琴 wangqin@njupt.edu.cn

  • 中图分类号: TN929.5

Jointly Optimized Deployment and Power for Unmanned Aerial Vehicle - Satellite Assisted Cell-Free Massive MIMO Systems

Funds: The Joint Funds for the National Natural Science Foundation of China (U24B20187), The Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu (BK20212001), The National Natural Science Foundation of China (92367302, 62371250), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (24KJA510008), The Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY224113)
  • 摘要: 为了解决传统去蜂窝大规模多输入多输出(CF-mMIMO)通信系统认知局限、资源短缺、覆盖盲区的问题,针对传统覆盖受限的去蜂窝网络下行传输系统,该文提出无人机-近地轨道卫星辅助的空天地一体化CF-mMIMO的功率分配和无人机位置部署方法。根据已知的用户位置以及地面接入点的部署缺陷,考虑各通信接入点的覆盖约束、最大功率约束、跨层干扰约束,以最大化用户最小速率为目标,建立联合用户关联、功率分配以及无人机放置的混合资源分配模型。基于块坐标下降方法和连续凸优化方法,将原本的非凸优化问题转化为3个子问题,并交替求得子问题近似解,最终得到原问题的最优近似解。仿真结果表明,所提方法能够合理安排系统的资源放置,显著提高系统通信覆盖,提升用户的平均吞吐量。
  • 图  1  空天地一体化CF-mMIMO系统

    图  2  初始化设置和无人机部署情况

    图  3  基于卫星无人机辅助下系统用户服务关联情况

    图  4  不同算法下的用户平均速率的CDF对比

    图  5  用户量数增加情况下的平均用户速率对比

    图  6  用户公平性对比图

    1  空天地一体化CF-mMIMO系统无人机部署和功率分配算法

     输入:$ {{\boldsymbol{\chi}} }^{0},{{\boldsymbol{q}}}^{0},{{}{{\boldsymbol{p}}}^{0},{{\boldsymbol{\rho}} }^{0}\text{}} $, $ r = 0 $, 误差$ \varpi $;
     输出:$ {{\boldsymbol{\chi}} }^{r},{{\boldsymbol{q}}}^{r},{{}{{\boldsymbol{p}}}^{r},{{\boldsymbol{\rho }}}^{r}\text{}} $
     循环
     (1) 对于给定的$ \{ {{\boldsymbol{\chi }}^r},{{\boldsymbol{q}}^r},{{\boldsymbol{P}}^r}\} $,求解问题式(17)得到问题优解$ {{\boldsymbol{\chi }}^{r + 1}} $;
     (2) 对于给定的$ \{ {{\boldsymbol{\chi }}^{r + 1}},{{\boldsymbol{q}}^r},{{\boldsymbol{P}}^r}\} $,求解问题式(21)得到问题优解
       $ {{\boldsymbol{q}}^{r + 1}} $;
     (3) 对于给定的$ \{ {{\boldsymbol{\chi }}^{r + 1}},{{\boldsymbol{q}}^{r + 1}},{{\boldsymbol{P}}^r}\} $,求解问题式(26)得到问题优解
       $ {{\boldsymbol{P}}^{r + 1}} $;
     (4) 更新$ r = r + 1 $;
     (5) 直到$ \left| {\lambda _{}^{r + 1} - \lambda _{}^r} \right| \lt \varpi $。
    下载: 导出CSV
  • [1] BJÖRNSON E and SANGUINETTI L. Cell-free versus cellular massive MIMO: What processing is needed for cell-free to win?[C]. 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2019: 1–5. doi: 10.1109/SPAWC.2019.8815488.
    [2] MISHRA A K and PONNUSAMY V. Analytical outage and coverage performance analysis of cell-free massive MIMO system based on radio stripe[J]. International Journal of Communication Systems, 2021, 34(13): e4914. doi: 10.1002/dac.4914.
    [3] QI Qiao, CHEN Xiaoming, and NG D W K. Robust beamforming for NOMA-based cellular massive IoT with SWIPT[J]. IEEE Transactions on Signal Processing, 2020, 68: 211–224. doi: 10.1109/tsp.2019.2959246.
    [4] SHEN Chao, CHANG T H, GONG J, et al. Multi-UAV interference coordination via joint trajectory and power control[J]. IEEE Transactions on Signal Processing, 2020, 68: 843–858. doi: 10.1109/TSP.2020.2967146.
    [5] NGO H Q, ASHIKHMIN A, YANG Hong, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834–1850. doi: 10.1109/TWC.2017.2655515.
    [6] INTERDONATO G, KARLSSON M, BJORNSON E, et al. Downlink spectral efficiency of cell-free massive MIMO with full-pilot zero-forcing[C]. 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 1003–1007. doi: 10.1109/GlobalSIP.2018.8646666.
    [7] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293.
    [8] GAO Qiling, JIA Min, GUO Qing, et al. Jointly optimized beamforming and power allocation for full-duplex cell-free NOMA in space-ground integrated networks[J]. IEEE Transactions on Communications, 2023, 71(5): 2816–2830. doi: 10.1109/TCOMM.2023.3251342.
    [9] FANG Xinran, WANG Yanmin, FENG Wei, et al. Power allocation for maritime cognitive satellite-UAV-terrestrial networks[C]. 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing, Beijing, China, 2020: 139–143. doi: 10.1109/ICCICC50026.2020.9450217.
    [10] SHI Yongpeng, WU Jinsong, LIU Lei, et al. Energy-aware relay optimization and power allocation in multiple unmanned aerial vehicles aided satellite-aerial-terrestrial networks[J]. IEEE Systems Journal, 2022, 16(4): 5293–5304. doi: 10.1109/JSYST.2022.3147491.
    [11] D’ANDREA C, GARCIA-RODRIGUEZ A, GERACI G, et al. Analysis of UAV communications in cell-free massive MIMO systems[J]. IEEE Open Journal of the Communications Society, 2020, 1: 133–147. doi: 10.1109/OJCOMS.2020.2964983.
    [12] D'ANDREA C, GARCIA-RODRIGUEZ A, GERACI G, et al. Cell-free massive MIMO for UAV communications[C]. IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8756714.
    [13] WANG Lifu and ZHANG Qi. Cell-free massive MIMO with UAV access points: UAV location optimization[C]. 2022 IEEE/CIC International Conference on Communications, Sanshui, China, 2022: 262–267. doi: 10.1109/ICCC55456.2022.9880734.
    [14] KHALIL A A, SELIM M Y, and RAHMAN M A. CURE: Enabling RF energy harvesting using cell-free massive MIMO UAVs assisted by RIS[C]. 2021 IEEE 46th Conference on Local Computer Networks, Edmonton, Canada, 2021: 533–540. doi: 10.1109/LCN52139.2021.9524984.
    [15] LIU Chengxiao, FENG Wei, CHEN Yunfei, et al. Cell-free satellite-UAV networks for 6G wide-area internet of things[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 1116–1131. doi: 10.1109/JSAC.2020.3018837.
    [16] RIERA-PALOU F, FEMENIAS G, CAUS M, et al. Enhancing cell-free massive MIMO networks through LEO satellite integration[C]. 2021 IEEE Wireless Communications and Networking Conference Workshops, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNCW49093.2021.9419988.
    [17] SEID A M, BOATENG G O, ANOKYE S, et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021, 8(15): 12203–12218. doi: 10.1109/JIOT.2021.3063188.
    [18] ZENG Fanzi, HU Zhenzhen, XIAO Zhu, et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7634–7647. doi: 10.1109/TVT.2020.2986776.
    [19] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  26
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-04-17
  • 网络出版日期:  2025-04-23

目录

    /

    返回文章
    返回