General Low-complexity Beamforming Designs for Reconfigurable Intelligent Surface-aided Multi-user Systems
-
摘要: 针对可重构智能超表面(RIS)辅助多用户系统中基站和RIS联合波束成形设计问题,该文提出通用低复杂度联合波束成形设计方案。首先,分析RIS辅助多用户系统以最大化和数据速率为目标的联合波束成形非凸优化问题。其次,利用波束导向矢量近似正交性设计RIS反射矩阵,进一步利用迫零方法设计基站发射波束成形,并对多用户进行功率分配优化。最后,讨论该方案适用性并对比该方案的计算复杂度相比现有方案降低了一个数量级。仿真结果表明,所提通用低复杂度波束成形设计可以获得较高和数据速率,并且采用最优功率分配可以进一步提高和数据速率。此外,仿真结果和理论分析都表明系统和数据速率随RIS位置的变化而变化,该结论为RIS位置的选择提供参考依据。Abstract:
Objective Reconfigurable Intelligent Surface (RIS), an innovative technology for 6G communication, can effectively reduce hardware costs and energy consumption. Most researchers examine the joint BeamForming (BF) design problem in RIS-assisted Multiple-Input Single-Output (MISO) systems or single-user Multiple-Input Multiple-Output (MIMO) systems. However, few investigate the non-convex joint BF optimization problem for RIS-assisted multi-user MISO systems. The existing joint BF design approaches for these systems primarily rely on iterative algorithms that are complex, and some methods have a limited application range. Methods To address the issue, general low-complexity joint BF designs for RIS-assisted multi-user systems are considered. The communication system consists of a Base Station (BS) with an M -antenna configuration utilizing a Uniform Rectangular Array (URA), a RIS with N reflecting elements also arranged in a URA, and K single-antenna User Equipment (UEs). It is assumed that the transmission channel between the BS and UEs experiences blocking due to fading and potential obstacles in a dynamic wireless environment. The non-convex optimization challenge of joint BF design is analyzed, with the goal of maximizing the sum data rate for RIS-aided multi-user systems. The design process involves three main steps: First, the RIS reflection matrix {\boldsymbol{\varTheta}} is designed based on the perfect channel state information obtained from both the BS-RIS and RIS-UE links. This design exploits the approximate orthogonality of the beam steering vectors for all transmitters and receivers using the URA (as detailed in Lemma 1). Second, the transmit BF matrix W at the BS is derived using the zero-forcing method. Third, the power allocation at the BS for multiple users is optimized using the Water-Filling (WF) algorithm. The proposed scheme is applicable to both single-user and multi-user scenarios, accommodating Line-of-Sight (LoS) paths, Rician channels with LoS paths, as well as Non-LoS (NLoS) paths. The computational complexity of the proposed joint BF design is quantified at a total complexity of {\mathcal{O}}(N+K^2M+K^3) . Compared with existing schemes, the computational complexity of the proposed design is reduced by at least an order of magnitude. Results and Discussions To verify the performance of the proposed joint BF scheme, simulation tests were conducted using the MATLAB platform. Five different schemes were considered for comparison: Scheme 1: BF design and Water-Filling Power Allocation (WFPA) proposed in this paper, utilizing Continuous Phase Shift (CPS) design without accounting for the limitations of the RIS phase shifter’s accuracy. Scheme 2: Proposed Beamforming (PBF) and WFPA with 2-bit Phase Shift (2PS) design, taking phase shift accuracy limitations into consideration. Scheme 3: 1-bit Phase Shift (1PS) design under PBF and WFPA. Scheme 4: 2PS design under Random BeamForming (RBF) and WFPA. Scheme 5: Equal Power Allocation (EPA) design under PBF and CPS. Initial numerical results demonstrate that the proposed BF design can achieve a high sum data rate, which can be further enhanced by employing optimal power allocation. Furthermore, under identical simulation conditions, the LoS scenario exhibited superior sum data rate performance compared to the Rician channel scenario, with a performance advantage of approximately 6 bit/(s∙Hz). This difference can be attributed to the presence of multiple paths in the Rician channel, which increases interference and decreases the signal-to-noise ratio, thereby reducing the sum data rate. Additionally, when the distance between BS and UEs is fixed, and the RIS is positioned on the straight line between the BS and the UEs, the system sum data rate initially decreases and then increases as the distance between the RIS and UEs increases due to path loss. The simulation results confirm that when the RIS is situated near the UEs (i.e., further from the BS), improved data rate performance can be achieved. This improvement arises because the path loss of the RIS-UE link is greater than that of the BS-RIS link. Therefore, optimal data rate performance is attained when the RIS is closer to the UEs. Moreover, both the simulation results and theoretical analysis indicate that the sum data rate is influenced by the RIS location, offering valuable insights for the selection of RIS positioning. Conclusions This paper proposes a general low-complexity BF design for RIS-assisted multi-user communication systems. Closed-form solutions for transmit BF, power distribution of the BS, and the reflection matrix of the RIS are provided to maximize the system’s sum data rate. Simulation results indicate that the proposed BF design achieves higher data rates than alternative schemes. Additionally, both the simulation findings and theoretical analysis demonstrate that the sum data rate varies with the RIS’s location, providing a reference criterion for optimizing RIS placement. -
Key words:
- Reconfigurable Intelligent Surface (RIS) /
- Beamforming /
- Sum data rate /
- Low complexity
-
1. 引言
第6代(the 6th Generation, 6G)通信的提出是为了满足未来通信新的性能指标,包括提高数据速率、扩大通信覆盖范围和实现智能通信[1,2]。可重构智能超表面(Reconfigurable Intelligent Surface, RIS)作为6G通信的一项创新技术应运而生,该技术可以有效降低硬件成本和能耗[3–5]。具体来说,RIS是由大量低成本、可重构的无源反射元件组成的平面,这些无源反射元件可以独立地反射接收到的信号,并可以调节各反射元件的参数,从而产生幅度和相移可重构的反射信号[6–8]。
在RIS辅助6G通信系统中,现有的联合波束成形技术存在一定的困难或局限[9–11]。在信道信息已知的情况下,RIS辅助通信系统的联合波束成形设计是一个复杂的非凸优化问题,即基站(Base Station, BS)发射波束成形与RIS反射矩阵的联合设计[12,13]。针对这一挑战,首先,文献[3]将联合波束成形优化问题分解为两个子问题:多输入单输出(Multiple-Input Single-Output, MISO)系统中传统的功率最小化问题和RIS反射元件的相移优化问题,进一步采用半定松弛技术以一种交替优化的方式解决上述问题,但该方法无法获得稳态解且对于大规模RIS来说复杂度较高。接着,针对RIS辅助MISO系统的能量效率最大化问题,文献[4]在BS处采用迫零(Zero Forcing, ZF)预编码技术,由于ZF预编码能够完全消除用户间干扰,从而解耦BS端功率分配和RIS端相移优化两个问题。但是,该方案的适用范围存在局限性,不能直接应用于其他预编码方案。而后,针对单用户毫米波多输入多输出(Multiple-Input Multiple-Output, MIMO)系统的频谱效率最大化问题,文献[14]设计了基于流形优化算法的联合波束成形设计,其中BS和用户设备(User Equipment, UE)配置了大量天线,因此采用模拟-数字混合预编码结构,以降低硬件成本和能耗。从上述工作可以看出,现有的联合波束成形研究大多采用了交替优化等迭代算法,此类方法的计算复杂度较高。因此,RIS辅助系统的低复杂度联合波束成形设计得到高度关注。文献[15]考虑RIS辅助正交频分复用系统,针对RIS无源波束成形的优化问题,提出了一种基于最大化-最小化的迭代算法,可以获得与现有连续凸近似方法几乎相同的平均可达速率性能和更低的复杂度。然而,这种方法仅适用于单输入单输出场景。文献[16]考虑RIS辅助单用户点到点MIMO系统,设计了一种具有低复杂度的BS端有源波束成形器,并从预先设计的训练集中选择能使可达速率最大化的RIS波束成形,获得了比交替优化算法更低的计算复杂度,但该方案的复杂度依赖于预先设计的训练集的大小,仍需要较高计算成本。此外,文献[17]针对RIS辅助多用户MISO系统提出了3种低复杂度RIS相移设计方案,所提出方案为基于近似闭合表达式的迭代算法,在一定程度上降低了复杂度,但复杂度仍与迭代次数相关,具有较高数值。
上述工作中,大部分考虑了RIS辅助MISO或单用户MIMO系统的联合波束成形设计问题,少数研究了RIS辅助多用户MISO系统的联合波束成形非凸优化问题。但是,现有联合波束成形设计方案主要采用复杂度较高的迭代算法,且部分方案的适用范围有限。针对现有情况,本文针对RIS辅助多用户通信系统设计了通用低复杂度的联合波束成形方案,实现和数据速率最大化,主要贡献如下:
(1) 联合设计了BS发射波束成形和功率分配以及RIS反射矩阵,以最大限度地提高所有用户数据速率总和,且该方案适用于单用户或多用户以及直达径信道或直达径、非直达径并存的莱斯信道。
(2) 分析了所提联合波束成形设计方案的计算复杂度,与现有其他方案相比,所提联合波束成形设计的计算复杂度至少降低了1个数量级。
(3) 仿真结果验证了所提出的联合波束成形设计和功率分配方案可以获得较高的和数据速率性能,并且结合仿真结果与理论分析得到了RIS位置布局的参考准则。
2. 系统模型与问题描述
2.1 系统模型
本文考虑了RIS辅助多用户下行通信系统,如图1(a)所示。该系统中配置了1个具有 M 个天线的BS、1个由 N 个反射元件构成的RIS和 K 个单天线UE。由于动态无线环境中存在衰落和潜在障碍物,本文假设BS和UE之间的传输信道被阻塞。此外,假设系统中所有信道的信道状态信息是完全已知的。
级联的BS-RIS-UEs信道由BS-RIS信道 {{\boldsymbol{G}}} \in {\mathbb{C}^{N \times M}} 和RIS-UEs信道 {{{\boldsymbol{H}}}_{\text{r}}} \;=\; {[{{{\boldsymbol{h}}}_1},{{{\boldsymbol{h}}}_2}, \cdots ,{{{\boldsymbol{h}}}_K}]^{\text{T}}} \in {\mathbb{C}^{K \times N}} 两部分组成。具体来说,RIS将所有接收到的信号结合在一个等效的物理点上,并从该点源反射出反射信号。利用 {{\boldsymbol{\varTheta}} } = {\text{diag(}}{r_1}{{\text{e}}^{{\text{j}}{\theta _1}}}, \cdots ,{r_n}{{\text{e}}^{{\text{j}}{\theta _n}}}, \cdots , {r_N}{{\text{e}}^{{\text{j}}{\theta _N}}}{\text{)}} 表示RIS反射矩阵,其中 {\theta _n} \in [0,2{\pi}) 为第n \left( {n = 1,2, \cdots ,N} \right) 个反射元件的相位, {r_n} \in [0,1] 为其幅度。因此,用户端接收信号可表示为
{{\boldsymbol{y}}} = {{{\boldsymbol{H}}}_{\text{r}}}{{\boldsymbol{\varTheta GWPs}}} + {{\boldsymbol{n}}} (1) 其中, {{\boldsymbol{s}}} = {[{s_1},{s_2}, \cdots ,{s_K}]^{\text{T}}} 为各项元素满足均值为0方差为1的发送信号, {{\boldsymbol{P}}} = {\text{diag(}}\sqrt {{P_1}} ,\sqrt {{P_2}} , \cdots , \sqrt {{P_K}} {\text{)}} 为功率分配矩阵, {{\boldsymbol{W}}} = [{{{\boldsymbol{w}}}_1},{{{\boldsymbol{w}}}_2}, \cdots ,{{{\boldsymbol{w}}}_K}] \in {\mathbb{C}^{M \times K}} 为BS端的发射波束成形,且其任意列元素满足 {\left\| {{{{\boldsymbol{w}}}_k}} \right\|^2} = 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (k = 1,2, \cdots ,K) , {{\boldsymbol{n}}} = [{n_1},{n_2}, \cdots , {n_K}]^{\text{T}} 表示加性高斯白噪声(Additive White Gaussian Noise, AWGN)向量,且其各元素服从复高斯分布 \mathcal{C}\mathcal{N}(0,{\sigma ^2}) 。 在RIS辅助系统中,BS和RIS分别配置了 {M_x} \times {M_y} 和 {N_x} \times {N_y} 的均匀面阵 (Uniform Rectangular Arrays, URAs), {M_x}/{N_x} 和 {M_y}/{N_y} 分别表示URA水平和竖直方向上的天线数/元件数,且存在 {M_x}{M_y} = M 以及 {N_x}{N_y} = N 。需要注意的是,第一,考虑到实际情况中RIS的布局必须满足存在RIS和BS/UE之间的直达径(Line-of-Sight, LoS);第二,考虑到6G通信系统所采用的电磁波频段高、衰减快,例如太赫兹,非直达径(Non-Line-of-Sight, NLoS)不存在或者存在少量有明显衰减的NLoS。因此,本文首先讨论BS-RIS和RIS-UEs信道仅存在LoS,设计出低复杂度的联合波束成形设计方案[18];在后文将所提出的波束成形设计推广到存在LoS和NLoS场景。首先,仅存在LoS场景的RIS-UE k和BS-RIS链路的信道可表示为
\qquad\qquad {{{\boldsymbol{h}}}_k} = {\beta _k}{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right) (2) \qquad\qquad {{\boldsymbol{G}}} = \beta {{\boldsymbol{a}}}_{\text{r}}^{}\left( {{\theta _{\text{r}}},{\phi _{\text{r}}}} \right){{\boldsymbol{a}}}_{\text{t}}^{\text{H}}\left( {{\theta _{\text{t}}},{\phi _{\text{t}}}} \right) (3) 其中, {{{\boldsymbol{h}}}_k} 为 {{{\boldsymbol{H}}}_{\text{r}}} 第 k 行,表示RIS与第 k 个用户间信道, {\beta _k} 和 \beta 均为信道复增益, {{\boldsymbol{a}}}_k^{}({\theta _k},{\phi _k}) \in {\mathbb{C}^{N \times 1}} 为RIS-UE k链路RIS阵列的反射波束导向矢量, {{\boldsymbol{a}}}_{\text{r}}^{}({\theta _{\text{r}}},{\phi _{\text{r}}}) \in {\mathbb{C}^{N \times 1}} 和 {{\boldsymbol{a}}}_{\text{t}}^{}({\theta _{\text{t}}},{\phi _{\text{t}}}) \in {\mathbb{C}^{M \times 1}} 分别为BS-RIS链路RIS阵列接收波束导向矢量和BS阵列发射波束导向矢量,以上所有的角度 \theta \in [0,{\pi}) 和 \phi \in [0,{{\pi} \mathord{\left/ {\vphantom {{\pi} 2}} \right. } 2}) 分别为各链路波束所对应的方位角和俯仰角如图1(b)所示。一般地,波束导向矢量可以表示为
{{\boldsymbol{a}}}\left( {\theta ,\phi } \right) = {{{\boldsymbol{a}}}_y}\left( {\theta ,\phi } \right) \otimes {{{\boldsymbol{a}}}_x}\left( {\theta ,\phi } \right) (4) 其中, \otimes 克罗内克积, {{{\boldsymbol{a}}}_x}(\theta ,\phi ) \in {\mathbb{C}^{{M_x} \times 1}} 和 {{{\boldsymbol{a}}}_y}(\theta ,\phi ) \in {\mathbb{C}^{{M_y} \times 1}} 可分别写做
\left. \begin{aligned} & {{{\boldsymbol{a}}}_x}\left( {\theta ,\phi } \right) = [1,{{\text{e}}^{{\text{j}}\frac{{2{\pi}}}{\lambda }d\cos \theta \sin \phi }}, \cdots ,{{\text{e}}^{{\text{j}}\frac{{2{\pi}}}{\lambda }d({M_x} - 1)\cos \theta \sin \phi }}] \\ & {{{\boldsymbol{a}}}_y}\left( {\theta ,\phi } \right) = [1,{{\text{e}}^{{\text{j}}\frac{{2{\pi}}}{\lambda }d\sin \theta \sin \phi }}, \cdots ,{{\text{e}}^{{\text{j}}\frac{{2{\pi}}}{\lambda }d({M_y} - 1)\sin\theta \sin \phi }}] \end{aligned} \right\} (5) 其中, d 为URA相邻天线/元件间距如图1(b), \lambda 为波长, {M_x} 和 {M_y} 分别表示URA水平和垂直方向的天线数/元件数。为简化表达,令 D = {{2{\pi}d} \mathord{\left/ {\vphantom {{2{\pi}d} \lambda }} \right. } \lambda } ,则式(4)中导向矢量 {{\boldsymbol{a}}}(\theta ,\phi ) 的第 m 个元素为 {[{a}(\theta ,\phi )]_m} = {{\text{e}}^{{\text{j}}D\sin \phi [({m_x} - 1)\cos\theta + ({m_y} - 1)\sin \theta ]}} ( m = ({m_y} - 1) {M_x} + {m_x} , {m_x} = 1,2, \cdots ,{M_x} , {m_y} = 1, 2, \cdots ,{M_y} )。
引理1 当URA阵列尺寸足够大时,不同波束的导向矢量满足近似正交,即 \mathop {{\text{lim}}}\limits_{{M_x},{M_y} \to \infty } \dfrac{{{{\boldsymbol{a}}}_i^{\text{H}}({\theta _i},{\phi _i}){{\boldsymbol{a}}}_j^{}({\theta _j},{\phi _j})}}{{\left\| {{{\boldsymbol{a}}}_i^{}({\theta _i},{\phi _i})} \right\|\left\| {{{\boldsymbol{a}}}_j^{}({\theta _j},{\phi _j})} \right\|}} = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ,\forall i \ne j 。
证明 根据式(4)推导可得{{\boldsymbol{a}}}_i^{\text{H}}\left( {{\theta _i},{\phi _i}} \right) {{\boldsymbol{a}}}_j^{}\left( {{\theta _j},{\phi _j}} \right) = \dfrac{{1 - {{\text{e}}^{{\text{j}}D\left( {{M_y} - 1} \right){\mu _{1,2}}}}}}{{1 - {{\text{e}}^{{\text{j}}D{\mu _{1,2}}}}}} \cdot \dfrac{{1 - {{\text{e}}^{{\text{j}}D\left( {{M_x} - 1} \right){\nu_{1,2}}}}}}{{1 - {{\text{e}}^{{\text{j}}D{v_{1,2}}}}}} ,其中, {\mu _{1,2}} = (\sin{\theta _j}\sin {\phi _j} - \sin{\theta _i}\sin {\phi _i}) , {\nu _{1,2}} = (\cos {\theta _j}\sin {\phi _j} - \cos {\theta _i}\sin {\phi _i}) 。当 i = j 时,有 {{\boldsymbol{a}}}_i^{\text{H}}({\theta _i},{\phi _i})\cdot {{\boldsymbol{a}}}_j^{}({\theta _j},{\phi _j}) = {M_x}{M_y} ;当 i \ne j 时,因为 {\theta _i} \ne {\theta _j} 且 {\phi _i} \ne {\phi _j} ,则 {\mu _{1,2}} \ne 0 且 {\nu _{1,2}} \ne 0 。因此,当 {M_x}, {M_y} \to \infty 时,存在 \mathop {\lim }\limits_{{M_x},{M_y} \to \infty } \dfrac{{{{\boldsymbol{a}}}_i^{\text{H}}\left( {{\theta _i},{\phi _i}} \right){{\boldsymbol{a}}}_j^{}\left( {{\theta _j},{\phi _j}} \right)}}{{\sqrt {{M_x}{M_y}} }} = 0, i \ne j 。
因此,引理1得证。需注意,引理1适用于所有配置URA的收发设备,例如本文中的BS和RIS。
2.2 问题描述
第 k 个UE的接收信号可表示为
{y_k} = {{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta G}}}{{{\boldsymbol{w}}}_k}\sqrt {{P_k}} {s_k} + \sum\limits_{i = 1,i \ne k}^K {{{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta G}}}{{{\boldsymbol{w}}}_i}\sqrt {{P_i}} {s_i}} + {n_k} (6) 其中, {{{\boldsymbol{w}}}_k} \in {\mathbb{C}^{M \times 1}} 为BS端发射波束成形矩阵 {{\boldsymbol{W}}} 的第 k 列。因此,可得到第 k 个UE的信干噪比(Signal to Interference plus Noise Ratio, SINR)为
{\gamma _k} = \frac{{{{\left| {{{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta G}}}{{{\boldsymbol{w}}}_k}\sqrt {{P_k}} } \right|}^2}}}{{{{\left| {\displaystyle\sum\limits_{i = 1,i \ne k}^K {{{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta G}}}{{{\boldsymbol{w}}}_i}\sqrt {{P_i}} } } \right|}^2} + {\sigma ^2}}} (7) 因此,所有用户的和数据速率为
R = \sum\limits_{k = 1}^K {{\text{lo}}{{\text{g}}_2}\left( {1 + {\gamma _k}} \right)} (8) 本文的目标是通过优化基站端发射波束成形矩阵 {{\boldsymbol{W}}} 和功率分配矢量 {{\boldsymbol{P}}} 以及RIS反射矩阵 {{\boldsymbol{\varTheta}} } 来最大化和数据速率。具体优化问题建模为
\left. \begin{gathered} \mathop {{\text{max}}}\limits_{{{\boldsymbol{W}},{\boldsymbol{\varTheta}} ,{\boldsymbol{P}}}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} R \\ {\text{s}}{\text{.t}}{\text{.}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{C1:}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\left\| {{{{\boldsymbol{w}}}_k}} \right\|^2} = 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} \forall k \in \left\{ {1,2, \cdots ,K} \right\} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{C2:}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\theta _n} \in [0,2{\pi}),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {r_n} \in [0,1] \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{C3:}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{k = 1}^K {{P_k}} \le {P_{{\text{max}}}} \\ \end{gathered} \right\} (9) 其中,约束C3中 {P_{{\text{max}}}} 为基站最大发射功率。由式(9)可以看出发射波束成形、功率分配和反射矩阵的联合优化问题为非凸问题。本文的目标是针对上述问题提出低复杂度的解决方案。
3. 低复杂度波束成形设计
在本文RIS辅助多用户系统中,第 k 个UE的接收信号可写做
{y_k} = {{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta GWPs}}} + {{{n}}_k} (10) 根据式(3)可将BS-RIS信道 {{\boldsymbol{G}}} 定义为
{{\boldsymbol{G}}} = \beta {{\boldsymbol{a}}}_{\text{r}}^{}\left( {{\theta _{\text{r}}},{\phi _{\text{r}}}} \right){{\boldsymbol{a}}}_{\text{t}}^{\text{H}}\left( {{\theta _{\text{t}}},{\phi _{\text{t}}}} \right) = \beta {{\boldsymbol{g}}}_1^{\text{H}}{{{\boldsymbol{g}}}_2} (11) 其中, {{\boldsymbol{g}}}_1^{\text{H}} \in {\mathbb{C}^{N \times 1}} 和 {{{\boldsymbol{g}}}_2} \in {\mathbb{C}^{1 \times M}} 可分别定义为
\left. \begin{aligned} {{\boldsymbol{g}}}_1^{\text{H}} =\,& {{\boldsymbol{a}}}_{\text{r}}^{}\left( {{\theta _{\text{r}}},{\phi _{\text{r}}}} \right) = {{\boldsymbol{a}}}_y^{}\left( {{\theta _{\text{r}}},{\phi _{\text{r}}}} \right) \otimes {{\boldsymbol{a}}}_x^{}\left( {{\theta _{\text{r}}},{\phi _{\text{r}}}} \right) \\ = \,&{\left( 1\;\; {{{\text{e}}^{{\text{j}}D\cos {\theta _{\text{r}}}\sin {\phi _{\text{r}}}}}}\;\; \cdots \;\; {{{\text{e}}^{{\text{j}}D(N - 1)\sin {\phi _{\text{r}}}(\cos {\theta _{\text{r}}} + \sin {\theta _{\text{r}}})}}} \right)^{\text{T}}} \\ \triangleq \,&{\left( {g_1^*}\;\; {g_2^*}\;\; \cdots \;\; {g_N^*} \right)^{\text{T}}} \\ {{{\boldsymbol{g}} }_2}= \,&{ {\boldsymbol{a}} }_{\text{t}}^{\text{H}}\left( {{\theta _{\text{t}}},{\phi _{\text{t}}}} \right) = {\left[ {{{\boldsymbol{a}}}_y^{}\left( {{\theta _{\text{t}}},{\phi _{\text{t}}}} \right) \otimes {{\boldsymbol{a}}}_x^{}\left( {{\theta _{\text{t}}},{\phi _{\text{t}}}} \right)} \right]^{\text{H}}} \end{aligned} \right\} (12) 因此,式(10)中第 k 个UE的接收信号可重写做
{y_k} = \beta {{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta g}}}_1^{\text{H}}{{{\boldsymbol{g}}}_2}{{\boldsymbol{WPs}}} + {n_k} (13) 3.1 RIS反射矩阵设计
首先,考虑到消除用户间干扰,利用引理1中不同导向矢量的近似正交性以及 g_n^{}g_n^* = 1 {\text{(}}n{\text{ = }}1,2{\text{,}} \cdots {\text{,}}N{\text{)}} 可将RIS反射矩阵设计为
{{\boldsymbol{\varTheta}} } = {\text{diag}}\left( {h_1^*{g_1}}\;\; {h_2^*{g_2}}\;\; \cdots \;\;{h_N^*{g_N}} \right) (14) 其中, g_n^{} 是式(12)中 {{\boldsymbol{g}}}_1^{} 的第 n 个元素, {{h}}_n 是向量 {{\boldsymbol{h}}} \in {\mathbb{C}^{1 \times N}} 的第 n 个元素,且该向量可定义为
{{\boldsymbol{h}}} = \frac{1}{K}\sum\limits_{k = 1}^K {\frac{{{{{\boldsymbol{h}}}_k}}}{{{\beta _k}}}} = \frac{1}{K}\sum\limits_{k = 1}^K {{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right)} \triangleq \left( {{h_1},{h_2}, \cdots ,{h_N}} \right) (15) 接着,利用式(12)、式(14)和式(15)可将第 k 个UE的接收信号式(13)中部分乘积 {{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta g}}}_1^{\text{H}} 进一步转换为
\begin{split} {{{\boldsymbol{h}}}_k}{{\boldsymbol{\varTheta g}}}_1^{\text{H}} =\,& {{{\boldsymbol{h}}}_k}{\text{diag}}\left( {h_1^*{g_1}}\;\;{h_2^*{g_2}}\;\; \cdots \;\;{h_N^*{g_N}} \right)\\ & \cdot{\left( {g_1^*}\;\;{g_2^*}\;\; \cdots \;\;{g_N^*} \right)^{\text{T}}}{\kern 1pt} = {{{\boldsymbol{h}}}_k}{{{\boldsymbol{h}}}^{\text{H}}} \\ =\,&\frac{{{\beta _k}}}{K}{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right)\sum\limits_{k = 1}^K {{{\boldsymbol{a}}}_k^{}\left( {{\theta _k},{\phi _k}} \right)} \\ \mathop \approx \limits^{({\mathrm{a}})} \,&\frac{{{\beta _k}}}{K}{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right){{\boldsymbol{a}}}_k^{}\left( {{\theta _k},{\phi _k}} \right){\kern 1pt} \mathop = \limits^{({\mathrm{b}})} \frac{{{\beta _k}N}}{K} \end{split} (16) 其中,步骤(a)结果利用引理1(即不同导向矢量在足够大URA尺寸下近似正交)得到,步骤(b)结果则利用 {{\boldsymbol{a}}}_k^{\text{H}}({\theta _k},{\phi _k}){{\boldsymbol{a}}}_k^{}({\theta _k},{\phi _k}) = N 得到。
最后,将部分乘积结果式(16)代回式(13),得到RIS辅助多用户系统中第 k 个UE的接收信号为
{y_k} = \frac{{\beta {\beta _k}N}}{K}{{{\boldsymbol{g}}}_2}{{\boldsymbol{WPs}}} + {{{n}}_k} (17) 3.2 发射波束成形及功率分配设计
针对RIS辅助多用户系统,由式(17)可得到所有用户总的接收信号为
{{\boldsymbol{y}}} = \frac{{\beta N}}{K}{\left( {{\beta _1}}\;\;{{\beta _2}}\;\; \cdots \;\;{{\beta _N}} \right)^{\text{T}}}{{{\boldsymbol{g}}}_2}{{\boldsymbol{WPs}}} + {{\boldsymbol{n}}} (18) 为消除接收端用户间干扰,利用ZF波束成形技术得到BS发射波束成形的第 k 列为
{\boldsymbol{w}}_{k}=\frac{{\boldsymbol{v}}_{k}}{\Vert {\boldsymbol{v}}_{k}{\Vert }_{\text{F}}} (19) 其中, {{{\boldsymbol{v}}}_k} 为矩阵 {{\boldsymbol{V}}} = {{\boldsymbol{H}}}_{{\text{eq}}}^{\text{H}}{\left( {{{\boldsymbol{H}}}_{{\text{eq}}}^{}{{\boldsymbol{H}}}_{{\text{eq}}}^{\text{H}}} \right)^{ - 1}} 第 k 列, {{\boldsymbol{H}}}_{{\text{eq}}}^{} 为
{{\boldsymbol{H}}}_{{\text{eq}}}^{} = \frac{{\beta N}}{K}{\left( {{\beta _1}}\;\;{{\beta _2}}\;\; \cdots \;\;{{\beta _K}} \right)^{\text{T}}}{{{\boldsymbol{g}}}_2} \triangleq \left( \begin{gathered} {{{\boldsymbol{h}}}_{{\text{eq}},1}} \\ {{{\boldsymbol{h}}}_{{\text{eq}},2}} \\ \vdots \\ {{{\boldsymbol{h}}}_{{\text{eq}},K}} \\ \end{gathered} \right) (20) 其中, {{\boldsymbol{H}}}_{{\text{eq}}}^{} 的第 k 行为 {{\boldsymbol{h}}_{{\text{eq}},k}} = {{\beta {\beta _k}N{{\boldsymbol{g}}_2}} \mathord{\left/ {\vphantom {{\beta {\beta _k}N{{g}_2}} K}} \right. } K} \in {\mathbb{C}^{1 \times M}} 。
因此,在消除用户间干扰后,可得第 k 个UE的信噪比(Signal to Noise Ratio, SNR)为
\begin{split} {{\gamma }^{\prime }}_{k}=\,&\frac{{P}_{k}}{{\sigma }^{2}}\left({\boldsymbol{h}}_{\text{eq},k}{\boldsymbol{w}}_{k}\right){\left({\boldsymbol{h}}_{\text{eq},k}{\boldsymbol{w}}_{k}\right)}^{\text{H}}\\ =\,&\frac{{P}_{k}}{{\sigma }^{2}}{\boldsymbol{h}}_{\text{eq},k}\frac{{\boldsymbol{v}}_{k}}{\Vert {\boldsymbol{v}}_{k}{\Vert }_{\text{F}}}\frac{{\boldsymbol{v}}_{k}^{\text{H}}}{\Vert {\boldsymbol{v}}_{k}{\Vert }_{\text{F}}}{\boldsymbol{h}}_{\text{eq},k}^{\text{H}}\\ =\,&\frac{{P}_{k}}{{\sigma }^{2}\Vert {\boldsymbol{v}}_{k}{\Vert }_{\text{F}}^{2}}{\left[{\boldsymbol{H}}_{\text{eq}}^{}{\boldsymbol{H}}_{\text{eq}}^{\text{H}}{\left({\boldsymbol{H}}_{\text{eq}}^{}{\boldsymbol{H}}_{\text{eq}}^{\text{H}}\right)}^{-1}\right]}_{k,k}\\ \,& \cdot {\left[{\boldsymbol{H}}_{\text{eq}}^{}{\boldsymbol{H}}_{\text{eq}}^{\text{H}}{\left({\boldsymbol{H}}_{\text{eq}}^{}{\boldsymbol{H}}_{\text{eq}}^{\text{H}}\right)}^{-1}\right]}_{k,k}^{\text{H}}\\ =\,&\frac{{P}_{k}}{{\sigma }^{2}\Vert {\boldsymbol{v}}_{k}{\Vert }_{\text{F}}^{2}}=\frac{{P}_{k}}{{\sigma }^{2}{\boldsymbol{v}}_{k}^{\rm{H}}{\boldsymbol{v}}_{k}}=\frac{{P}_{k}}{{\sigma }^{2}{\left[{\boldsymbol{V}}^{\text{H}}\boldsymbol{V}\right]}_{k,k}}\\ =\,&\frac{{P}_{k}}{{\sigma }^{2}{\left[{\left({\boldsymbol{H}}_{\text{eq}}^{}{\boldsymbol{H}}_{\text{eq}}^{\text{H}}\right)}^{-1}\right]}_{k,k}}\end{split} (21) 基于上述已优化的BS发射波束成形矩阵 {{\boldsymbol{W}}} 和RIS反射矩阵 {{\boldsymbol{\varTheta}} } ,最大化和数据速率的优化问题进一步转换为设计基站功率分配矢量 {{\boldsymbol{P}}} ,可建模为
\left. \begin{gathered} \mathop {{\text{max}}}\limits_{{\boldsymbol{P}}} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} R = \sum\limits_{k = 1}^K {{{\log }_2}\left( {1 + {{\gamma '}_k}} \right)} \\ {\text{s}}{\text{.t}}{\text{.}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{C3:}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{k = 1}^K {{P_k}} \le {P_{{\text{max}}}} \end{gathered} \right\} (22) 上述针对 K 用户的功率分配优化问题可利用注水(Water Filling, WF)算法得到最优解,表示为
{P_k} = {\left( {\frac{1}{\xi } - {\sigma ^2}{{\left[ {{{\left( {{{\boldsymbol{H}}}_{{\text{eq}}}^{}{{\boldsymbol{H}}}_{{\text{eq}}}^{\text{H}}} \right)}^{ - 1}}} \right]}_{k,k}}} \right)^ + } (23) 其中, {(x)^ + } = {\text{max}}\{ x,0\} ,并且 \xi 表示拉格朗日乘子,满足约束条件
\sum\limits_{k = 1}^K {{{\left( {\frac{1}{\xi } - {\sigma ^2}{{\left[ {{{\left( {{{\boldsymbol{H}}}_{{\text{eq}}}^{}{{\boldsymbol{H}}}_{{\text{eq}}}^{\text{H}}} \right)}^{ - 1}}} \right]}_{k,k}}} \right)}^ + }} = {P_{{\text{max}}}} (24) 3.3 适用性和复杂度分析
本节讨论RIS辅助多用户系统波束成形设计的一般适用性和计算复杂度。
首先,本文提出的低复杂度联合波束成形设计不仅适用于多用户场景,也适用于单用户场景,而单用户场景是多用户场景的一种特殊情况。已知估计信道或统计信道信息时,所提出的联合波束成形设计和功率分配方案就可以应用于RIS辅助单/多用户系统,具体步骤如算法1所示。此外,提出的联合波束成形设计和功率分配方案不仅可用于只存在LoS的信道场景,而且可推广到LoS和NLoS并存的莱斯信道场景,该方案在后文中给出。
表 1 低复杂度联合波束成形设计算法输入:初始化 \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta }}}{\text{,}}{ {\boldsymbol{P}}}} \right) 步骤1 基于已知BS-RIS信道 {{\boldsymbol{G}}} 和RIS-UEs信道 {{{\boldsymbol{H}}}_{\text{r}}} 和引理1,根
据式(14)计算RIS反射矩阵 {{\boldsymbol{\varTheta}} } ;步骤2 基于ZF理论,根据式(19)计算BS发射波束成形 {{\boldsymbol{W}}} ; 步骤3 基于WF理论,根据式(23)计算功率分配矢量 {{\boldsymbol{P}}} ; 步骤4 输出优化得到的 \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta}} }{\text{,}}{ {\boldsymbol{P}}}} \right) 。 其次,对于RIS辅助多用户系统的联合波束成形设计,现有文献[3,19]主要采用了交替优化算法;另外,文献[16,17]分别针对单用户和多用户RIS辅助系统提出了低复杂度波束成形设计方案,但这些方案计算复杂度仍较高,如表1所示。本文提出的RIS辅助多用户系统波束成形设计的总体计算复杂度包括发射波束成形设计、反射矩阵设计和功率分配设计。首先,式(14)中得到RIS反射矩阵的计算复杂度为 \mathcal{O}\left( N \right) ;接着,式(19)中发射波束成形 {{\boldsymbol{W}}} 的计算复杂度为 \mathcal{O}\left( {{K^2}M + {K^3}} \right) ;最后,式(23)中WF功率分配算法的计算复杂度与发射波束成形的计算复杂度相同。因此,本文提出的联合波束成形设计的总计算复杂度为 \mathcal{O}\left( {N + {K^2}M + {K^3}} \right) 。从表1波束成形方案计算复杂度对比结果可以看出,所提出的波束成形设计和功率分配方案的计算复杂度比现有的交替优化算法以及其他低复杂度算法至少低1个数量级。
表 1 波束成形方案计算复杂度对比文献 复杂度 参数 文献 [3] \mathcal{O}\left( {{N^6}} \right) N:RIS反射元件数 文献[18] \mathcal{O}\left( {{I_{\text{o}}}\left( {{I_{\text{a}}}{M^2}{K^2} + {I_{\text{p}}}{N^2}} \right)} \right) M:基站发射天线数 文献[16] \mathcal{O}\left( {Q\left( {{M^3} + M{N^2} + N!} \right)} \right) K:用户数 文献[17] \mathcal{O}\left( {NI\left( {K{M^2}} \right)} \right) {I_{\text{o}}} , {I_{\text{a}}} , {I_{\text{p}}} , I :迭代次数 本文 \mathcal{O}\left( {N + {K^2}M + {K^3}} \right) Q:预设训练集数目 4. 莱斯信道下波束成形设计
在RIS辅助通信系统中,为提升用户的系统性能通常将RIS布局在更靠近UEs的位置[20]。由于RIS远离BS,导致BS-RIS路径衰减大,在此假设BS-RIS仅存在LoS;而RIS靠近UEs,则假设RIS-UEs信道同时存在LoS和NLoS,即莱斯信道[21]。因此,可将上文LoS信道推广到RIS-UEs信道为莱斯信道,可重新定义为
{{{\boldsymbol{H}}}_{\text{R}}} = \sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{LoS}}} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{NLoS}}} (25) 其中, \kappa 为莱斯因子, {{\boldsymbol{H}}}_{\text{r}}^{{\text{LoS}}} = {{{\boldsymbol{H}}}_{\text{r}}} 为与上文相同的LoS信道, {{\boldsymbol{H}}}_{\text{r}}^{{\text{NLoS}}} 为RIS-UEs链路的NLoS信道部分,且其第 k 行即第 k 个用户的NLoS信道可表示为与式(2)类似的写法 {{\boldsymbol{h}}}_k^{{\text{NLoS}}} = \beta _k^{{\text{NLoS}}}{{\boldsymbol{a}}}_k^{{\text{(NLoS)}}{\text{H}}}(\theta _k^{{\text{NLoS}}}, \phi _k^{{\text{NLoS}}}) 。
类似于式(13),在莱斯信道下第 k 个UE的接收信号可写做
\begin{split} y_k^{\text{R}} =\,& \beta \left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{{\boldsymbol{h}}}_k} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{h}}}_k^{{\text{NLoS}}}} \right)\\ & \cdot {{{\boldsymbol{\varTheta}} }_{\text{R}}}{{\boldsymbol{g}}}_1^{\text{H}}{{{\boldsymbol{g}}}_2}{{{\boldsymbol{W}}}_{\text{R}}}{{{\boldsymbol{P}}}_{\text{R}}}{{\boldsymbol{s}}} + n_k^{\text{R}} \end{split} (26) 同理于式(14),可得到莱斯信道下的RIS反射矩阵
{{{\boldsymbol{\varTheta}} }_{\text{R}}} = {\text{diag}}\left( {h_{{\text{R}},1}^*{g_1}}\;\; {h_{{\text{R}},2}^*{g_2}}\;\; \cdots \;\;{h_{{\text{R}},N}^*{g_N}} \right) (27) 其中, h_{{\text{R}},n}^{} 是向量 {{{\boldsymbol{h}}}_{\text{R}}} \in {\mathbb{C}^{1 \times N}} 的第 n 个元素,且该向量可由式(28)构成
\begin{split} {{{\boldsymbol{h}}}_{\text{R}}} = \,&\frac{1}{K}\sum\limits_{k = 1}^K {\sqrt {\frac{\kappa }{{1 + \kappa }}} \frac{{{{{\boldsymbol{h}}}_k}}}{{{\beta _k}}} + \sqrt {\frac{1}{{1 + \kappa }}} \frac{{{{\boldsymbol{h}}}_k^{{\text{NLoS}}}}}{{\beta _k^{{\text{NLoS}}}}}} \\ =\,& \frac{1}{K}\sum\limits_{k = 1}^K \sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right) + \sqrt {\frac{1}{{1 + \kappa }}} {{{{\boldsymbol{a}}}_k^{{\text{(NLoS)H}}}} }\\ & \cdot\left( {\theta _k^{{\text{NLoS}}},\phi _k^{{\text{NLoS}}}} \right) \\ \triangleq \,&\left( {{h_{{\text{R}},1}},{h_{{\text{R}},2}}, \cdots ,{h_{{\text{R}},N}}} \right) \\[-1pt] \end{split} (28) 同理,利用式(12)、式(27)和式(28)可将莱斯信道下第 k 个UE的接收信号式(26)的部分乘积转换为
\begin{split} & \left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{h}_k} + \sqrt {\frac{1}{{1 + \kappa }}} {h}_k^{{\text{NLoS}}}} \right){{{\boldsymbol{\varTheta}} }_{\text{R}}}{{\boldsymbol{g}}}_1^{\text{H}} \\ & \quad = \left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{{h}}}_k} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{h}}}_k^{{\text{NLoS}}}} \right) \\ & \quad \quad \cdot {\text{diag}}\left( {\begin{array}{*{20}{c}} {h_{{\text{R}},1}^*{g_1}}&{h_{{\text{R}},2}^*{g_2}}& \cdots &{h_{{\text{R}},N}^*{g_N}} \end{array}} \right)\\ & \quad \quad \cdot{\left( {\begin{array}{*{20}{c}} {g_1^*}&{g_2^*}& \cdots &{g_N^*} \end{array}} \right)^{\text{T}}} \\ & \quad = \left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{{\boldsymbol{h}}}_k} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{h}}}_k^{{\text{NLoS}}}} \right){{\boldsymbol{h}}}_{\text{R}}^{\text{H}} \\ & \quad = \frac{1}{K}\left[ \sqrt {\frac{\kappa }{{1 + \kappa }}} \beta _k^{}{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right) \right.\\ & \quad \quad \left.+ \sqrt {\frac{1}{{1 + \kappa }}} \beta _k^{{\text{NLoS}}}{{\boldsymbol{a}}}{{_k^{{\text{(NLoS)}}}}^{\text{H}}}\left( {\theta _k^{{\text{NLoS}}},\phi _k^{{\text{NLoS}}}} \right) \right] \\ & \quad \quad\cdot \sum\limits_{k = 1}^K \left( \sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{a}}}_k^{}\left( {{\theta _k},{\phi _k}} \right)\right. \\ & \quad \left.\quad+ \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{a}}}_k^{{\text{NLoS}}}\left( {\theta _k^{{\text{NLoS}}},\phi _k^{{\text{NLoS}}}} \right) \right) \\ & \quad \mathop \approx \limits^{({\mathrm{a}})} \frac{1}{K}\left[ \frac{{\kappa {\beta _k}}}{{1 + \kappa }}{{\boldsymbol{a}}}_k^{\text{H}}\left( {{\theta _k},{\phi _k}} \right){{\boldsymbol{a}}}_k^{}\left( {{\theta _k},{\phi _k}} \right)\right. \\ & \quad \quad+ \frac{{\beta _k^{{\text{NLoS}}}}}{{1 + \kappa }}{{\boldsymbol{a}}}{{_k^{{\text{(NLoS)}}}}^{\text{H}}}\left( {\theta _k^{{\text{NLoS}}},\phi _k^{{\text{NLoS}}}} \right) \\ & \quad \quad \cdot \left. {{{\boldsymbol{a}}}_k^{{\text{NLoS}}}\left( {\theta _k^{{\text{NLoS}}},\phi _k^{{\text{NLoS}}}} \right)} \right]\\ & \quad \mathop = \limits^{({\mathrm{b)}}} \frac{{N(\kappa {\beta _k} + \beta _k^{{\text{NLoS}}})}}{{K(1 + \kappa )}} \end{split} (29) 其中,和步骤(a)和步骤(b)与式(16)中的对应步骤遵从相同原理。
最后,将部分乘积结果式(29)代回式(26)中,得到莱斯信道条件下RIS辅助多用户系统中第 k 个UE的接收信号为
y_k^{\text{R}} = \frac{{\beta N(\kappa {\beta _k} + \beta _k^{{\text{NLoS}}})}}{{K(1 + \kappa )}}{{{\boldsymbol{g}}}_2}{{{\boldsymbol{W}}}_{\text{R}}}{{{\boldsymbol{P}}}_{\text{R}}}{{\boldsymbol{s}}} + n_k^{\text{R}} (30) 可见式(30)类似于LoS信道条件下得到的式(17),因此,莱斯信道条件下的后续BS发射波束成形 {{{\boldsymbol{W}}}_{\text{R}}} 和功率分配矢量 {{{\boldsymbol{P}}}_{\text{R}}} 的设计同理于LoS信道中方案即3.2节,为节省空间,不在此赘述。
5. 仿真分析
本节通过MATLAB 仿真验证所提出方案的有效性。下文仿真中,BS天线数为16,AWGN噪声方差为 {\sigma ^2} = - 80{\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{dBm}} ,BS与UEs间距离为60 m, RIS布局在BS与UEs间的直线上一点。仿真中信道模型同时考虑大尺度衰落(路径损耗)和小尺度衰落:(1) 与距离相关的大尺度衰落模型为
L(d) = {C_0}{\left( {\frac{d}{{{d_0}}}} \right)^{ - \alpha }} (31) 其中, d 为BS-RIS间或RIS-UEs间距离, {C_0} = - 30 dB为在参考距离 {d_0} = 1 m处的路径损耗,且 \alpha 表示路径损耗指数,假设BS-RIS和RIS-UEs链路的路径损耗指数分别为 {\alpha _{{\text{BR}}}} = 2.2 和 {\alpha _{{\text{RU}}}} = 2.8 [22]。 (2) 仿真中假设BS-RIS链路为LoS信道而RIS-UEs链路在未说明的情况下默认为LoS场景(当为莱斯信道时会特别说明)。因此,考虑两种衰落后BS-RIS信道和RIS-UEs信道可以分别建模为
\quad {{\boldsymbol{G}}} = {C_0}{\left( {\frac{{{d_{{\text{BR}}}}}}{{{d_0}}}} \right)^{ - {\alpha _{{\text{BR}}}}}}{{{\boldsymbol{G}}}^{{\text{LoS}}}} (32) \begin{split} \qquad\quad {{{\boldsymbol{H}}}_{\text{R}}} =\,& {C_0}{\left( {\frac{{{d_{{\text{RU}}}}}}{{{d_0}}}} \right)^{ - {\alpha _{{\text{RU}}}}}}\Biggr( \sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{LoS}}} \\ & + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{NLoS}}} \Biggr) \end{split} (33) 其中, {d_{{\text{BR}}}} 为BS和RIS之间距离, {d_{{\text{RU}}}} = 60\; {\mathrm{m}} - {d_{{\text{BR}}}} 为RIS和UEs之间距离,且满足 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathrm{m}} < {d_{{\text{BR}}}} < 60{\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathrm{m}} ;在RIS-UEs信道式(33)中,当莱斯因子 \kappa \to \infty 时,即为仅存在LoS场景。
仿真中同时比较了五种不同方案的性能。方案1—本文提出的波束成形(BeamForming, BF)设计和WF功率分配(WF Power Allocation, WFPA),且不考虑RIS移相器精度限制的连续相移(Continuous Phase Shift, CPS)设计;方案2—本文提出的BF(Proposed BF, PBF)和WFPA下考虑相移精度限制的2比特相移(2-bit Phase Shift, 2PS)设计;方案3—PBF和WFPA下的1比特相移(1-bit Phase Shift, 1PS)设计;方案4—随机BF(Random BF, RBF)和WFPA下的2PS设计;方案5—PBF和CPS下的等功率分配(Equal Power Allocation, EPA)设计。
图2给出了RIS辅助4用户系统和数据速率与反射元件数N的关系。从图2可以看出,由于RIS带来的反射增益,各方案的和数据速率随反射元件数N增加而增大。此外,随着相移精度从1-bit提高到2-bit直至连续相移,和数据速率性能逐步提升。另外,所提出的联合波束成形方案在所有相移情况下都明显优于随机波束成形方案,且性能增益随着N增大而扩大。最后,当所提出的联合波束成形方案在连续相移情况下时,采用WFPA方案的和数据速率优于采用EPA方案的,在相同条件下WPFA方案可以获得1.8 bit/(s·Hz)的和数据速率提升。
图3给出了RIS辅助4用户系统在RIS-UEs链路为LoS场景和莱斯信道即LoS与NLoS均存在场景两种情况下的和数据速率性能对比。首先,与图2结果相同,即图3中各方案的和数据速率随反射元件数N增加而增大,且随着相移精度提高而增大。不同之处在于,从图3可以明显看出,相同条件下LoS场景的和数据速率性能优于莱斯信道场景的,存在约6 bit/(s·Hz)的性能优势,原因在于莱斯信道中存在多径导致干扰增大、信干噪比减小,使和数据速率降低。
图4给出了RIS辅助4用户系统和数据速率与RIS和UEs间距离 {d_{{\text{RU}}}} 的关系。从图4可以发现,第一,随着RIS与UEs间距离的增加,和数据速率先减小后增大。原因是,当 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathrm{m}} < {d_{{\text{RU}}}} < 33.6{\kern 1pt} {\kern 1pt} {\mathrm{m}} 时,由BS-RIS信道式(32)和RIS-UEs信道式(33)构成的级联信是 {d_{{\text{RU}}}} 的单调递减函数;当 33.6{\kern 1pt}\, {\mathrm{m}} < {d_{{\text{RU}}}} < 60{\kern 1pt} {\kern 1pt} {\mathrm{m }}时,级联信道是 {d_{{\text{RU}}}} 的单调递增函数。具体原因由式(32)和式(33)推导为
\begin{split} {{\boldsymbol{G}}}{{{\boldsymbol{H}}}_{\text{R}}} =\,& C_0^2{{{\boldsymbol{G}}}^{{\text{LoS}}}}\left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{LoS}}} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{NLoS}}}} \right)\\ & \cdot{\left( {\frac{{{d_{{\text{BR}}}}}}{{{d_0}}}} \right)^{ - {\alpha _{{\text{BR}}}}}}{\left( {\frac{{{d_{{\text{RU}}}}}}{{{d_0}}}} \right)^{ - {\alpha _{{\text{RU}}}}}} \\ = \,&C_0^2{{{\boldsymbol{G}}}^{{\text{LoS}}}}\left( {\sqrt {\frac{\kappa }{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{LoS}}} + \sqrt {\frac{1}{{1 + \kappa }}} {{\boldsymbol{H}}}_{\text{r}}^{{\text{NLoS}}}} \right)\\ & \cdot{\left( {60 - {d_{{\text{RU}}}}} \right)^{ - 2.2}}d_{{\text{RU}}}^{ - 2.8} \\[-1pt] \end{split} (34) 其中, {d_{{\text{RU}}}} \in \left( {0,60} \right) 且其原单位‘m’被 {d_0} = 1 m除去。不妨令 f(x) = {({60} - x)^{{ - 2}{.2}}}{x^{ - {2}{.8}}}{\kern 1pt} {\kern 1pt} {\kern 1pt} ({0} < x < {60}) ,存在
\frac{{\partial f(x)}}{{\partial x}} = {\left( {{60} - x} \right)^{ - {2}{.2}}}{x^{ - {2}{.8}}}\left( {\frac{{{2}{.2}}}{{{60} - x}} - \frac{{{2}{.8}}}{x}} \right) (35) 当 \text{2}\text{.2}/(\text{60}-x)-\text{2}\text{.8}/x=0 ,也就是 x = 33.6 时,得到该函数最小值。因此,当 0{\kern 1pt} < x < 33.6{\kern 1pt} 时, f(x) 单调递减;当 33.6{\kern 1pt} < x < {60} 时, f(x) 单调递增。此函数单调性与图4所示和数据速率关于RIS-UEs距离 {d_{{\text{RU}}}} 的单调性相同。第二,当 {d_{{\text{RU}}}} = 10 m(即 {d_{{\text{BR}}}} = 50 m)时,所有方案的和数据速率均优于各自在 {d_{{\text{RU}}}} = 50 m(即 {d_{{\text{BR}}}} = 10 m)的和数据速率。也就是说,RIS靠近UEs(即远离BS)时能够获得更好的和数据速率性能。这是因为RIS-UEs链路的路径损耗比BS-RIS链路的路径损耗大,即 {\alpha _{{\text{RU}}}} = 2.8 > {\alpha _{{\text{BR}}}} = 2.2 。因此,当RIS更接近UEs时,可以实现更好的和数据速率性能。
图5给出了RIS辅助系统和数据速率与用户数量 K 的关系,包括单用户 K{\text{ = }}1 和多用户 K{\text{ = }}2, 3,4,5,6 场景,其中反射元件数 N = 64 ,RIS与UEs之间的距离 {d_{{\text{RU}}}} = 30 m。首先,可以看出各方案的和数据速率随UE数量的增加而增大。其次,在相同条件下,多用户场景采用WFPA方案的和数据速率性能优于采用EPA方案;然而,对于单用户来说从图5的区域放大图可以看出采用WFPA方案的和数据速率性能与采用EPA方案相同,该仿真结果与理论相符,即单用户场景下全部功率分配给单一用户,功率分配方案无性能差异。此外,由于注水算法在多用户场景下更有效,因此随着UE数量的增加,可以看出WFPA的优势也更加明显。最后,连续相移波束成形方案优于2-bit/1-bit相移波束成形方案和随机波束成形方案,且该性能增益随着UE数量的增加而放大。
6. 结束语
本文提出一种用于RIS辅助多用户通信系统的通用低复杂度波束成形设计,给出BS发射波束成形及功率分配和RIS反射矩阵的闭式解,从而最大化系统和数据速率。仿真结果表明,所提波束成形设计能够获得相比于其他方案更高的和数据速率。此外,仿真结果和理论分析均证实,当基站与用户之间的距离一定且RIS位于基站与用户间的直线上时,由于路径损耗原因,系统和数据速率随着RIS与用户之间距离的增大呈现先减小后增大的变化趋势,本结论为RIS位置的布局提供了参考准则。
-
1 低复杂度联合波束成形设计算法
输入:初始化 \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta }}}{\text{,}}{ {\boldsymbol{P}}}} \right) 步骤1 基于已知BS-RIS信道 {{\boldsymbol{G}}} 和RIS-UEs信道 {{{\boldsymbol{H}}}_{\text{r}}} 和引理1,根
据式(14)计算RIS反射矩阵 {{\boldsymbol{\varTheta}} } ;步骤2 基于ZF理论,根据式(19)计算BS发射波束成形 {{\boldsymbol{W}}} ; 步骤3 基于WF理论,根据式(23)计算功率分配矢量 {{\boldsymbol{P}}} ; 步骤4 输出优化得到的 \left( {{{\boldsymbol{W}}}{\text{,}}{ {\boldsymbol{\varTheta}} }{\text{,}}{ {\boldsymbol{P}}}} \right) 。 表 1 波束成形方案计算复杂度对比
文献 复杂度 参数 文献 [3] \mathcal{O}\left( {{N^6}} \right) N:RIS反射元件数 文献[18] \mathcal{O}\left( {{I_{\text{o}}}\left( {{I_{\text{a}}}{M^2}{K^2} + {I_{\text{p}}}{N^2}} \right)} \right) M:基站发射天线数 文献[16] \mathcal{O}\left( {Q\left( {{M^3} + M{N^2} + N!} \right)} \right) K:用户数 文献[17] \mathcal{O}\left( {NI\left( {K{M^2}} \right)} \right) {I_{\text{o}}} , {I_{\text{a}}} , {I_{\text{p}}} , I :迭代次数 本文 \mathcal{O}\left( {N + {K^2}M + {K^3}} \right) Q:预设训练集数目 -
[1] YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6. [2] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208. [3] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025. [4] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609. [5] JIANG Hao, RUAN Chengyao, ZHANG Zaichen, et al. A general wideband non-stationary stochastic channel model for intelligent reflecting surface-assisted MIMO communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 5314–5328. doi: 10.1109/TWC.2021.3066806. [6] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897. [7] 李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽性能研究[J]. 中国科学: 信息科学, 2023. doi: 10.1360/SSI-2023-0174.LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2023. doi: 10.1360/SSI-2023-0174. [8] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737. [9] YAN Wenjing, YUAN Xiaojun, HE Zhenqing, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793–1808. doi: 10.1109/JSAC.2020.3000811. [10] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061. [11] PAN Cunhua, REN Hong, WANG Kezhi, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218–5233. doi: 10.1109/TWC.2020.2990766. [12] LIU Sifan, LIU Rang, LI Ming, et al. Joint BS-RIS-user association and beamforming design for RIS-assisted cellular networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6113–6128. doi: 10.1109/TVT.2022.3231347. [13] 李国权, 党刚, 林金朝, 等. RIS辅助的MISO系统安全鲁棒波束赋形算法[J]. 电子与信息学报, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894.LI Guoquan, DANG Gang, LIN Jinzhao, et al. Secure and robust beamforming algorithm for RIS assisted MISO systems[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894. [14] WANG Peilan, FANG Jun, DAI Linglong, et al. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1052–1064. doi: 10.1109/TWC.2020.3030570. [15] HE Zhenyao, SHEN Hong, XU Wei, et al. Low-cost passive beamforming for RIS-aided wideband OFDM systems[J]. IEEE Wireless Communications Letters, 2022, 11(2): 318–322. doi: 10.1109/LWC.2021.3126852. [16] AN Jiancheng, XU Chao, GAN Lu, et al. Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts[J]. IEEE Transactions on Communications, 2022, 70(2): 1245–1260. doi: 10.1109/TCOMM.2021.3127924. [17] ALMEKHLAFI M, ARFAOUI M A, ASSI C, et al. A low complexity passive beamforming design for reconfigurable intelligent surface (RIS) in 6G networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6309–6321. doi: 10.1109/TVT.2022.3233469. [18] SU Ruochen, DAI Linglong, and NG D W K. Wideband precoding for RIS-aided THz communications[J]. IEEE Transactions on Communications, 2023, 71(6): 3592–3604. doi: 10.1109/TCOMM.2023.3263230. [19] ZHANG Zijian and DAI Linglong. A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network[J]. IEEE Transactions on Signal Processing, 2021, 69: 4085–4101. doi: 10.1109/TSP.2021.3088755. [20] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107. [21] LI Xingwang, GAO Xuesong, LIU Yingting, et al. Overlay CR-NOMA assisted intelligent transportation system networks with imperfect SIC and CEEs[J]. Chinese Journal of Electronics, 2023, 32(6): 1258–1270. doi: 10.23919/cje.2022.00.071. [22] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887. -