高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球泛在连接新模式:手机直连卫星关键技术及挑战

何元智 肖永伟 张世杰 封龙 李志强

何元智, 肖永伟, 张世杰, 封龙, 李志强. 全球泛在连接新模式:手机直连卫星关键技术及挑战[J]. 电子与信息学报, 2024, 46(5): 1591-1603. doi: 10.11999/JEIT240032
引用本文: 何元智, 肖永伟, 张世杰, 封龙, 李志强. 全球泛在连接新模式:手机直连卫星关键技术及挑战[J]. 电子与信息学报, 2024, 46(5): 1591-1603. doi: 10.11999/JEIT240032
HE Yuanzhi, XIAO Yongwei, ZHANG Shijie, FENG Long, LI Zhiqiang. A Novel Pattern for Global Ubiquitous Interconnection: Key Technologies and Challenges of Direct-to-Smartphone[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1591-1603. doi: 10.11999/JEIT240032
Citation: HE Yuanzhi, XIAO Yongwei, ZHANG Shijie, FENG Long, LI Zhiqiang. A Novel Pattern for Global Ubiquitous Interconnection: Key Technologies and Challenges of Direct-to-Smartphone[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1591-1603. doi: 10.11999/JEIT240032

全球泛在连接新模式:手机直连卫星关键技术及挑战

doi: 10.11999/JEIT240032
详细信息
    作者简介:

    何元智:女,研究员,博士生导师,研究方向为卫星通信、天地一体化网络

    肖永伟:男,高工,研究方向为低轨卫星通信系统设计

    张世杰:男,教授,研究方向为卫星互联网、空间通信、卫星总体设计

    封龙:男,高工,研究方向为卫星移动通信终端设计

    李志强:男,博士生,研究方向为卫星干扰分析

    通讯作者:

    何元智 he_yuanzhi@126.com

  • 中图分类号: TN927.2

A Novel Pattern for Global Ubiquitous Interconnection: Key Technologies and Challenges of Direct-to-Smartphone

  • 摘要: 面向未来全球泛在连接通信需求,卫星通信对补盲通信覆盖盲区、增强无处不在的覆盖起到了至关重要的作用。手机直连卫星(DS)技术作为未来6G网络中实现全球天地融合、万物智联的一种技术手段,已成为近两年全球范围内的发展热点,得到学术界和产业界的广泛关注。该文介绍了手机直连卫星技术国内外发展现状和主流的技术路线,分析了手机直连卫星技术在频率资源使用受限、手机直连卫星宽带业务要求、海量用户业务时变非均匀分布、低轨卫星高动态影响以及手机高密度集成等方面遇到的发展挑战,并提出星地同频共用、超大阵面星载多波束天线、星地多维资源管控、适应卫星高动态的空口体制、极窄密集波束按需调度、高集成小型化手机设计等关键解决方案,最后对该文内容做了简要总结。
  • 图  1  未来手机直连卫星通信系统示意图

    图  2  国内典型直连卫星手机终端

    图  3  ASTS公司BlueWalker 3试验星及其天线

    图  4  技术挑战与关键技术之间的关系图

    图  5  翼阵一体天线设计思路

    图  6  一体化阵面剖面示意图

    图  7  任务完成时间随总任务数量变化关系

    图  8  随机接入检测性能仿真图

    图  9  下行PSS信号检测性能仿真图

    图  10  固定区域波束与点波束结合的随遇接入示意图

    图  11  金属边框环形天线方向图

  • [1] GIORDANI M and ZORZI M. Non-terrestrial networks in the 6G era: Challenges and opportunities[J]. IEEE Network, 2021, 35(2): 244–251. doi: 10.1109/MNET.011.2000493.
    [2] 栾宁, 熊轲, 张煜, 等. 6G: 典型应用、关键技术与面临挑战[J]. 物联网学报, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096−3750.2022.00253.

    LUAN Ning, XIONG Ke, ZHANG Yu, et al. 6G: Typical applications, key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253. doi: 10.11959/j.issn.2096−3750.2022.00253.
    [3] 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[EB/OL]. http://report.ccidgroup.com/viewPdf/d418285d51a047a9ae03fef21128bf9d, 2023.
    [4] HE Yuanzhi, LI Yuan, and YIN Hao. Co-frequency interference analysis and avoidance between NGSO constellations: Challenges, techniques, and trends[J]. China Communications, 2023, 20(7): 1–14. doi: 10.23919/JCC.fa.2022-0865.202307.
    [5] EULER S, FU Xiaotian, HELLSTEN S, et al. Using 3GPP technology for satellite communication[J]. Ericsson Technology Review, 2023, 2023(6): 2–12. doi: 10.23919/ETR.2023.10173867.
    [6] 蓝天翼. “手机直连卫星”的发展与挑战[J]. 国际太空, 2023(3): 58–62. doi: 10.3969/j.issn.1009-2366.2023.03.012.

    LAN Tianyi. The development and challenges of "mobile direct connection to satellite"[J]. Space International, 2023(3): 58–62. doi: 10.3969/j.issn.1009-2366.2023.03.012.
    [7] NSR, finally, spacex joining the direct satellite-to-device race[EB/OL].https://www.nsr.com/finally-spacex-joining-the-direct-satellite-to-device-race, 2023.
    [8] HOSSEINIAN M, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22–31. doi: 10.1109/MAES.2021.3072690.
    [9] ARANITI G, IERA A, PIZZI S, et al. Toward 6G non-terrestrial networks[J]. IEEE Network, 2022, 36(1): 113–120. doi: 10.1109/MNET.011.2100191.
    [10] ITU-R. Radio regulations[R]. Geneva, 2020.
    [11] 孙耀华, 彭木根. 面向手机直连的低轨卫星通信: 关键技术、发展现状与未来展望[J]. 电信科学, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000-0801.2023031.

    SUN Yaohua and PENG Mugen. Low earth orbit satellite communication supporting direct connection with mobile phones: Key technologies, recent progress and future directions[J]. Telecommunications Science, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000-0801.2023031.
    [12] SHI Jia, HU Junfan, YUE Yang, et al. Outage probability for OTFS based downlink LEO satellite communication[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3355–3360. doi: 10.1109/TVT.2022.3144466.
    [13] 何元智, 彭聪, 于季弘, 等. 面向密集多波束组网的卫星通信系统资源调度算法[J]. 通信学报, 2021, 42(4): 109–118. doi: 10.11959/j.issn.1000-436x.2021102.

    HE Yuanzhi, PENG Cong, YU Jihong, et al. Resource scheduling algorithm of satellite communication system for future multi-beam dense networking[J]. Journal on Communications, 2021, 42(4): 109–118. doi: 10.11959/j.issn.1000-436x.2021102.
    [14] WANG Wenjin, CHEN Tingting, DING Rui, et al. Location-based timing advance estimation for 5G integrated LEO satellite communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6002–6017. doi: 10.1109/TVT.2021.3079936.
    [15] ZHEN Li, QIN Hao, SONG Bin, et al. Random access preamble design and detection for mobile satellite communication systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(2): 280–291. doi: 10.1109/JSAC.2018.2804138.
    [16] 朱剑锋, 孙耀华, 彭木根. 低轨卫星通信系统的前导序列设计[J]. 北京邮电大学学报, 2022, 45(6): 75–81. doi: 10.13190/j.jbupt.2022-163.

    ZHU Jianfeng, SUN Yaohua, and PENG Mugen. Preamble design for low earth orbit communication systems[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 75–81. doi: 10.13190/j.jbupt.2022-163.
    [17] KRISHNAMURTHY V, ATHAUDAGE C R N, and HUANG Dawei. Adaptive OFDM synchronization algorithms based on discrete stochastic approximation[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1561–1574. doi: 10.1109/TSP.2005.843710.
    [18] HUANG Miaona, CHEN Jun, and FENG Suili. Synchronization for OFDM-based satellite communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5693–5702. doi: 10.1109/TVT.2021.3069580.
    [19] MORELLI M and MORETTI M. A robust maximum likelihood scheme for PSS detection and integer frequency offset recovery in LTE systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(2): 1353–1363. doi: 10.1109/TWC.2015.2489206.
    [20] WANG Jiawei, JIANG Chunxiao, KUANG Linling, et al. Iterative Doppler frequency offset estimation in satellite high-mobility communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2875–2888. doi: 10.1109/JSAC.2020.3005497.
    [21] ROBERTS L G. ALOHA packet system with and without slots and capture[J]. ACM SIGCOMM Computer Communication Review, 1975, 5(2): 28–42. doi: 10.1145/1024916.1024920.
    [22] LIVA G. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA[J]. IEEE Transactions on Communications, 2011, 59(2): 477–487. doi: 10.1109/TCOMM.2010.120710.100054.
  • 加载中
图(11)
计量
  • 文章访问数:  857
  • HTML全文浏览量:  819
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-04-17
  • 网络出版日期:  2024-05-06
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回