[1] |
GIORDANI M and ZORZI M. Non-terrestrial networks in the 6G era: Challenges and opportunities[J]. IEEE Network, 2021, 35(2): 244–251. doi: 10.1109/MNET.011.2000493.
|
[2] |
栾宁, 熊轲, 张煜, 等. 6G: 典型应用、关键技术与面临挑战[J]. 物联网学报, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096−3750.2022.00253.LUAN Ning, XIONG Ke, ZHANG Yu, et al. 6G: Typical applications, key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022, 6(1): 29–43. doi: 10.11959/j.issn.2096-3750.2022.00253. doi: 10.11959/j.issn.2096−3750.2022.00253.
|
[3] |
赛迪智库无线电管理研究所. 6G概念及愿景白皮书[EB/OL]. http://report.ccidgroup.com/viewPdf/d418285d51a047a9ae03fef21128bf9d, 2023.
|
[4] |
HE Yuanzhi, LI Yuan, and YIN Hao. Co-frequency interference analysis and avoidance between NGSO constellations: Challenges, techniques, and trends[J]. China Communications, 2023, 20(7): 1–14. doi: 10.23919/JCC.fa.2022-0865.202307.
|
[5] |
EULER S, FU Xiaotian, HELLSTEN S, et al. Using 3GPP technology for satellite communication[J]. Ericsson Technology Review, 2023, 2023(6): 2–12. doi: 10.23919/ETR.2023.10173867.
|
[6] |
蓝天翼. “手机直连卫星”的发展与挑战[J]. 国际太空, 2023(3): 58–62. doi: 10.3969/j.issn.1009-2366.2023.03.012.LAN Tianyi. The development and challenges of "mobile direct connection to satellite"[J]. Space International, 2023(3): 58–62. doi: 10.3969/j.issn.1009-2366.2023.03.012.
|
[7] |
NSR, finally, spacex joining the direct satellite-to-device race[EB/OL].https://www.nsr.com/finally-spacex-joining-the-direct-satellite-to-device-race, 2023.
|
[8] |
HOSSEINIAN M, CHOI J P, CHANG S H, et al. Review of 5G NTN standards development and technical challenges for satellite integration with the 5G network[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(8): 22–31. doi: 10.1109/MAES.2021.3072690.
|
[9] |
ARANITI G, IERA A, PIZZI S, et al. Toward 6G non-terrestrial networks[J]. IEEE Network, 2022, 36(1): 113–120. doi: 10.1109/MNET.011.2100191.
|
[10] |
ITU-R. Radio regulations[R]. Geneva, 2020.
|
[11] |
孙耀华, 彭木根. 面向手机直连的低轨卫星通信: 关键技术、发展现状与未来展望[J]. 电信科学, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000-0801.2023031.SUN Yaohua and PENG Mugen. Low earth orbit satellite communication supporting direct connection with mobile phones: Key technologies, recent progress and future directions[J]. Telecommunications Science, 2023, 39(2): 25–36. doi: 10.11959/j.issn.1000-0801.2023031.
|
[12] |
SHI Jia, HU Junfan, YUE Yang, et al. Outage probability for OTFS based downlink LEO satellite communication[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3355–3360. doi: 10.1109/TVT.2022.3144466.
|
[13] |
何元智, 彭聪, 于季弘, 等. 面向密集多波束组网的卫星通信系统资源调度算法[J]. 通信学报, 2021, 42(4): 109–118. doi: 10.11959/j.issn.1000-436x.2021102.HE Yuanzhi, PENG Cong, YU Jihong, et al. Resource scheduling algorithm of satellite communication system for future multi-beam dense networking[J]. Journal on Communications, 2021, 42(4): 109–118. doi: 10.11959/j.issn.1000-436x.2021102.
|
[14] |
WANG Wenjin, CHEN Tingting, DING Rui, et al. Location-based timing advance estimation for 5G integrated LEO satellite communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6002–6017. doi: 10.1109/TVT.2021.3079936.
|
[15] |
ZHEN Li, QIN Hao, SONG Bin, et al. Random access preamble design and detection for mobile satellite communication systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(2): 280–291. doi: 10.1109/JSAC.2018.2804138.
|
[16] |
朱剑锋, 孙耀华, 彭木根. 低轨卫星通信系统的前导序列设计[J]. 北京邮电大学学报, 2022, 45(6): 75–81. doi: 10.13190/j.jbupt.2022-163.ZHU Jianfeng, SUN Yaohua, and PENG Mugen. Preamble design for low earth orbit communication systems[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(6): 75–81. doi: 10.13190/j.jbupt.2022-163.
|
[17] |
KRISHNAMURTHY V, ATHAUDAGE C R N, and HUANG Dawei. Adaptive OFDM synchronization algorithms based on discrete stochastic approximation[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1561–1574. doi: 10.1109/TSP.2005.843710.
|
[18] |
HUANG Miaona, CHEN Jun, and FENG Suili. Synchronization for OFDM-based satellite communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5693–5702. doi: 10.1109/TVT.2021.3069580.
|
[19] |
MORELLI M and MORETTI M. A robust maximum likelihood scheme for PSS detection and integer frequency offset recovery in LTE systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(2): 1353–1363. doi: 10.1109/TWC.2015.2489206.
|
[20] |
WANG Jiawei, JIANG Chunxiao, KUANG Linling, et al. Iterative Doppler frequency offset estimation in satellite high-mobility communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2875–2888. doi: 10.1109/JSAC.2020.3005497.
|
[21] |
ROBERTS L G. ALOHA packet system with and without slots and capture[J]. ACM SIGCOMM Computer Communication Review, 1975, 5(2): 28–42. doi: 10.1145/1024916.1024920.
|
[22] |
LIVA G. Graph-based analysis and optimization of contention resolution diversity slotted ALOHA[J]. IEEE Transactions on Communications, 2011, 59(2): 477–487. doi: 10.1109/TCOMM.2010.120710.100054.
|