高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模STAR-RIS辅助的近场ISAC传输方法

王小明 李佳琪 刘婷 蒋锐 徐友云

王小明, 李佳琪, 刘婷, 蒋锐, 徐友云. 大规模STAR-RIS辅助的近场ISAC传输方法[J]. 电子与信息学报. doi: 10.11999/JEIT240018
引用本文: 王小明, 李佳琪, 刘婷, 蒋锐, 徐友云. 大规模STAR-RIS辅助的近场ISAC传输方法[J]. 电子与信息学报. doi: 10.11999/JEIT240018
WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240018
Citation: WANG Xiaoming, LI Jiaqi, LIU Ting, JIANG Rui, XU Youyun. Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240018

大规模STAR-RIS辅助的近场ISAC传输方法

doi: 10.11999/JEIT240018
基金项目: 国家自然科学基金 (62101274, 62371246)
详细信息
    作者简介:

    王小明:男,副教授,研究方向为无线移动通信

    李佳琪:女,硕士生,研究方向为通信感知一体化

    刘婷:女,副教授,研究方向为无线移动通信

    蒋锐:男,副教授,研究方向为无线移动通信

    徐友云:男,教授,研究方向为无线移动通信

    通讯作者:

    李佳琪 1222014134@njupt.edu.cn

  • 中图分类号: TN929.5

Large-Scale STAR-RIS Assisted Near-Field ISAC Transmission Method

Funds: The National Natural Science Foundation of China (62101274, 62371246)
  • 摘要: 同时透射和反射可重构智能表面(STAR-RIS)能够创建全空间智能无线电环境,有效提高无线通信系统性能,具有广阔的研究潜力。因此,该文提出一种大规模STAR-RIS辅助的近场通感一体化(ISAC)方法,并对感知目标3维参数估计的克拉美罗界(CRB)进行优化。首先,搭建近场系统模型,分别推导基站、STAR-RIS、通信用户、感知目标与传感器之间的导向矢量。其次,通过设计基站发射波束成形矩阵、发射信号协方差矩阵和STAR-RIS透射反射系数,实现感知性能最优化。再次,针对非凸优化问题利用半正定松弛方法进行求解。仿真结果表明了所提出ISAC方案的有效性,以及近场额外距离自由度所带来的定位性能优势。
  • 图  1  导向矢量的推导模型

    图  2  CRB根值与通信用户SINR阈值的关系

    图  3  CRB根值与传感元件个数${N_s}$的关系

    图  4  感知目标定位的3维切片图,$\tilde \gamma = 0$

    图  5  感知目标定位的3维切片图,$\tilde \gamma {\text{ = 20}}\;{\text{dB}}$

    1  优化过程算法

     初始化参数:${\nu ^l}$, ${\eta ^l}$, ${{\boldsymbol{\varLambda}} ^l}$;设置外层收敛精度$0 < \chi < 1$,迭代
     次数初始化$m = 1$,最大迭代次数为${M_{{\text{max}}}}$;内层收敛精度
     $0 < c < 1$,迭代次数为$u$,最大迭代次数为${U_{{\text{max}}}}$,惩罚因子更
     新参数为$0 < d < 1$;初始化h$\left( {{\nu ^0}} \right)$;
     (1) While$\left| {h\left( {{\nu ^m}} \right) - h\left( {{\nu ^{m - 1}}} \right)} \right| \ge \chi $ or $m \le {M_{{\text{max}}}}$ do
     (2)  $u = 1$
     (3)  While $\left| {{\text{tr}}{{({{\boldsymbol{E}}^{ - 1}})}^u} - {\text{tr}}{{({E^{ - 1}})}^{u - 1}}} \right| \ge c$ or $u \le {U_{{\text{max}}}}$ do
     (4)   固定${\varepsilon ^u}$,求得$ \mathcal{S}\mathcal{P}1 $的最优解$\tilde \tau $并更新${\left( {\tilde \tau } \right)^u}$;
     (5)   固定${\left( {\tilde \tau } \right)^u}$,求得$ \mathcal{S}\mathcal{P}2 $的最优解$\tilde \varepsilon $并更新${\left( {\tilde \varepsilon } \right)^u}$;
     (6)   设置迭代次数$u = u + 1$;
     (7)  End while
     (8)  If $h\left( {{\nu ^m}} \right) \le 0.95h\left( {{\nu ^{m - 1}}} \right)$ then
     (9)   将${\left( {\tilde \varepsilon } \right)^u}$和${\left( {\tilde \tau } \right)^u}$代入更新${\bar {\boldsymbol{O}}^m}$,
         ${\eta ^m} = {\eta ^{m - 1}},{{\boldsymbol{\varLambda}} ^m} = {{\boldsymbol{\varLambda}} ^{m - 1}} + \dfrac{1}{\eta }{\bar {\boldsymbol{O}}^m}$;
     (10) else
     (11)   ${{\boldsymbol{\varLambda}} ^m} = {{\boldsymbol{\varLambda}} ^{m - 1}},{\eta ^m} = d{\eta ^{m - 1}}$;
     (12) 设置迭代次数$m = m + 1$,更新$h\left( {{\nu ^m}} \right) = {\left\| {{{\bar {\boldsymbol{O}}}^m}} \right\|_\infty }$;
     (13) End while
    下载: 导出CSV
  • [1] WEI Zhiqing, QU Hanyang, WANG Yuan, et al. Integrated sensing and communication signals toward 5G-A and 6G: A survey[J]. IEEE Internet of Things Journal, 2023, 10(13): 11068–11092. doi: 10.1109/JIOT.2023.3235618.
    [2] BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [3] LIU Yuanwei, MU Xidong, LIU Xiao, et al. Reconfigurable intelligent surface-aided multi-user networks: Interplay between NOMA and RIS[J]. IEEE Wireless Communications, 2022, 29(2): 169–176. doi: 10.1109/MWC.102.2100363.
    [4] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [5] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Physics-based 3D end-to-end modeling for double-RIS assisted non-stationary UAV-to-ground communication channels[J]. IEEE Transactions on Communications, 2023, 71(7): 4247–4261. doi: 10.1109/TCOMM.2023.3266832.
    [6] GUO Yuan, LIU Yang, WU Qingqing, et al. Joint beamforming for RIS aided full-duplex integrated sensing and uplink communication[C]. The IEEE International Conference on Communications, Rome, Italy, 2023: 4249–4254. doi: 10.1109/ICC45041.2023.10279303.
    [7] XU Jiaqi, LIU Yuanwei, MU Xidong, et al. STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2021, 25(9): 3134–3138. doi: 10.1109/LCOMM.2021.3082214.
    [8] WANG Zhaolin, MU Xidong, XU Jiaqi, et al. Simultaneously transmitting and reflecting surface (STARS) for terahertz communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 861–877. doi: 10.1109/JSTSP.2023.3279621.
    [9] CHEN Jiagao and YU Xiangbin. Ergodic rate analysis and phase design of STAR-RIS aided NOMA with statistical CSI[J]. IEEE Communications Letters, 2022, 26(12): 2889–2893. doi: 10.1109/LCOMM.2022.3202346.
    [10] WANG Yufei, YANG Zheng, CUI Jingjing, et al. Optimizing the fairness of STAR-RIS and NOMA assisted integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5895–5907. doi: 10.1109/TWC.2023.3328872.
    [11] LIU Zhenrong, LI Zongze, WEN Miaowen, et al. STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients[J]. IEEE Transactions on Communications, 2023, 71(7): 4313–4327. doi: 10.1109/TCOMM.2023.3274137.
    [12] LI Haochen, WANG Zhaolin, MU Xidong, et al. Near-field integrated sensing, positioning, and communication: A downlink and uplink framework[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2196–2212. doi: 10.1109/JSAC.2024.3413956.
    [13] JIANG Hao, XIONG Baiping, ZHANG Hongming, et al. Hybrid far-and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8290–8303. doi: 10.1109/TWC.2023.3262063.
    [14] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [15] WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
    [16] SENGIJPTA S K. Fundamentals of statistical signal processing: Estimation theory[J]. Technometrics, 1995, 37(4): 465–466. doi: 10.1080/00401706.1995.10484391.
    [17] SHI Qingjiang and HONG Mingyi. Penalty dual decomposition method for nonsmooth nonconvex optimization—Part I: Algorithms and convergence analysis[J]. IEEE Transactions on Signal Processing, 2020, 68: 4108–4122. doi: 10.1109/TSP.2020.3001906.
    [18] LUO Zhiquan, MA W, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [19] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
    [20] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  51
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-09-06
  • 网络出版日期:  2024-09-28

目录

    /

    返回文章
    返回