高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究

武花干 边逸轩 陈墨 徐权

武花干, 边逸轩, 陈墨, 徐权. 忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究[J]. 电子与信息学报, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010
引用本文: 武花干, 边逸轩, 陈墨, 徐权. 忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究[J]. 电子与信息学报, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010
WU Huagan, BIAN Yixuan, CHEN Mo, XU Quan. Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010
Citation: WU Huagan, BIAN Yixuan, CHEN Mo, XU Quan. Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818-3826. doi: 10.11999/JEIT240010

忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究

doi: 10.11999/JEIT240010
基金项目: 国家自然科学基金(62371073, 12172066, 52277001),江苏省研究生创新项目(KYCX23_3181)
详细信息
    作者简介:

    武花干:女,副教授,研究方向为细胞神经网络、神经元功能性电路

    边逸轩:男,硕士生,研究方向为非线性电路与系统

    陈墨:女,教授,研究方向为非线性电路与系统、同步控制

    徐权:男,副教授,研究方向为忆阻神经网络、神经元功能性电路

    通讯作者:

    徐权 xuquan@cczu.edu.cn

  • 中图分类号: TN713+.4

Multistable State and Phase Synchronization of Memristor-coupled Heterogeneous Memristive Cellular Neural Network

Funds: The National Natural Science Foundation of China (62371073, 12172066, 52277001), The Postgraduate Education Reform Projects of Jiangsu Province (KYCX23_3181)
  • 摘要: 忆阻具有天然的可塑性,可实现与生物神经元和突触所具有的相似或相同机制的硅基神经元和纳米突触。将忆阻用作突触耦合两个异构的忆阻细胞神经网络,该文构建了一个忆阻耦合异构忆阻细胞神经网络。该耦合网络含有一个与忆阻突触初值条件和子网初值条件相关的空间平衡点集,可呈现出复杂的动力学演化。利用数值仿真方法,揭示了耦合网络依赖于初值条件而存在的稳定点、周期、混沌、超混沌以及无界振荡等多稳态行为。此外,在忆阻突触的调控下,两个异构子网可达成相位同步。最后,基于STM32单片机硬件平台完成了电路实验验证。
  • 图  1  忆阻耦合异构细胞神经网络结构示意图

    图  2  δ1-δ2平面以及δ1-δ3平面的平衡点稳定性分布

    图  3  耦合系统式(4)的双参数动力学演化

    图  4  关于参数$\varphi_0 $变化的分岔图与LE谱

    图  5  耦合系统式(4)的多稳态现象

    图  6  耦合系统式(4)的双参数动力学演化

    图  7  关于子网初值变化的分岔图与LE谱

    图  8  耦合系统(4)的典型吸引子

    图  9  不同子网初值条件下,两个子网相位差|$\Delta $θ(t)|随时间的演化图

    图  10  硬件实验捕获的相位轨迹及其对应的时域波形

  • [1] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821.
    [2] YANG Xiaoyuan, TAYLOR B, WU Ailong, et al. Research progress on memristor: From synapses to computing systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(5): 1845–1857. doi: 10.1109/TCSI.2022.3159153.
    [3] KONG Xinxin, YU Fei, YAO Wei, et al. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation[J]. Neural Networks, 2024, 171: 85–103. doi: 10.1016/j.neunet.2023.12.008.
    [4] XU Quan, WANG Yiteng, CHEN Bei, et al. Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation[J]. Chaos, Solitons & Fractals, 2023, 172: 113627. doi: 10.1016/j.chaos.2023.113627.
    [5] VIJAY S D, THAMILMARAN K, and AHAMED A I. Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model[J]. Nonlinear Dynamics, 2023, 111(1): 789–799. doi: 10.1007/s11071-022-07850-4.
    [6] 唐利红, 贺宗梅, 姚延立. 忆阻Hopfield神经网络动力学分析及其电路实现[J]. 计算物理, 2022, 39(2): 244–252. doi: 10.19596/j.cnki.1001-246x.8386.

    TANG Lihong, HE Zongmei, and YAO Yanli. Dynamical analysis and circuit implementation of a memristive Hopfield neural network[J]. Chinese Journal of Computational Physics, 2022, 39(2): 244–252. doi: 10.19596/j.cnki.1001-246x.8386.
    [7] WANG Yibo, MIN Fuhong, CHENG Yizi, et al. Dynamical analysis in dual-memristor-based FitzHugh–Nagumo circuit and its coupling finite-time synchronization[J]. The European Physical Journal Special Topics, 2021, 230(7): 1751–1762. doi: 10.1140/epjs/s11734-021-00121-0.
    [8] HU Bin, GUAN Zhihong, CHEN Guanrong, et al. Multistability of delayed hybrid impulsive neural networks with application to associative memories[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5): 1537–1551. doi: 10.1109/TNNLS.2018.2870553.
    [9] FANG Shitong, ZHOU Shengxi, YURCHENKO D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review[J]. Mechanical Systems and Signal Processing, 2022, 166: 108419. doi: 10.1016/j.ymssp.2021.108419.
    [10] FLAK J, LAIHO M, PAASIO A, et al. Dense CMOS implementation of a binary-programmable cellular neural network[J]. International Journal of Circuit Theory and Applications, 2006, 34(4): 429–443. doi: 10.1002/cta.365.
    [11] LIU Zhongyang, LUO Shaoheng, XU Xiaowei, et al. A multi-level-optimization framework for FPGA-based cellular neural network implementation[J]. ACM Journal on Emerging Technologies in Computing Systems, 2018, 14(4): 47. doi: 10.1145/3273957.
    [12] CHEN Qun, LI Bo, YIN Wei, et al. Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks[J]. Chaos, Solitons & Fractals, 2023, 171: 113440. doi: 10.1016/j.chaos.2023.113440.
    [13] XIU Chunbo, ZHOU Ruxia, and LIU Yuxia. New chaotic memristive cellular neural network and its application in secure communication system[J]. Chaos, Solitons & Fractals, 2020, 141: 110316. doi: 10.1016/j.chaos.2020.110316.
    [14] DUAN Shukai, HU Xiaofang, DONG Zhekang, et al. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6): 1202–1213. doi: 10.1109/TNNLS.2014.2334701.
    [15] BILOTTA E, PANTANO P, and VENA S. Speeding up cellular neural network processing ability by embodying memristors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1228–1232. doi: 10.1109/TNNLS.2015.2511818.
    [16] XIU Chunbo and LI Xin. Edge extraction based on memristor cell neural network with fractional order template[J]. IEEE Access, 2019, 7: 90750–90759. doi: 10.1109/ACCESS.2019.2927225.
    [17] BARTSCH R, KANTELHARDT J W, PENZEL T, et al. Experimental evidence for phase synchronization transitions in the human cardiorespiratory system[J]. Physical Review Letters, 2007, 98(5): 054102. doi: 10.1103/PhysRevLett.98.054102.
    [18] ECKHORN R. Neural mechanisms of scene segmentation: Recordings from the visual cortex suggest basic circuits for linking field models[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 464–479. doi: 10.1109/72.761705.
    [19] UHLHAAS P J and SINGER W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52(1): 155–168. doi: 10.1016/j.neuron.2006.09.020.
    [20] ZHANG Qingguang, PATWARDHAN A R, KNAPP C F, et al. Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans[J]. European Journal of Applied Physiology, 2015, 115(2): 417–427. doi: 10.1007/s00421-014-3017-4.
    [21] YU Xihong, BAO Han, CHEN Mo, et al. Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation[J]. Chaos, Solitons & Fractals, 2023, 171: 113442. doi: 10.1016/j.chaos.2023.113442.
    [22] LI Zhijun, ZHOU Haiyan, WANG Mengjiao, et al. Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with HR and FN models[J]. Nonlinear Dynamics, 2021, 104(2): 1455–1473. doi: 10.1007/s11071-021-06315-4.
    [23] 武花干, 周杰, 陈胜垚, 等. 非对称忆阻诱导的吸引子非对称演化与机理研究[J]. 电子与信息学报, 2022, 44(6): 2101–2109. doi: 10.11999/JEIT210307.

    WU Huagan, ZHOU Jie, CHEN Shengyao, et al. Asymmetric memristor-induced attractor asymmetric evolution and its mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101–2109. doi: 10.11999/JEIT210307.
  • 加载中
图(10)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  60
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-04-02
  • 网络出版日期:  2024-04-23
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回