A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication
-
摘要: 作为一种基于软硬件资源共享和信息共享的新型信息通信技术,通感一体化(ISAC)可将无线感知集成到Wi-Fi平台,为低成本的室内定位提供一种高效的方法。针对室内定位参数估计实时性与准确性问题,该文提出一种基于3维矩阵束(MP)联合参数估计算法。首先,对信道状态信息(CSI)数据进行分析,构建包含到达角(AoA)、飞行时间(ToF)和多普勒频移(DFS)的3维矩阵。其次,对3维矩阵进行平滑处理并利用3维MP算法进行参数估计,通过聚类找到直达径。最后,利用双角定位法进行定位,验证该文所提算法的有效性。实验结果表明,与多重信号分类(MUSIC)参数估计算法相比,无需复杂的峰值搜索步骤,降低了90%计算复杂度。与2维MP算法相比,加入多普勒参数,使AoA估计误差均值在会议室和教室两种场景下分别降低了1.45°和2°。该文通过实际测试验证了所提算法在室内可以达到在置信度67%处平均0.56 m的定位精度。因此,该文所提算法有效地改善了现有室内定位参数估计的实时性和准确性。Abstract: As a new information communication technology based on software and hardware resource sharing and information sharing, Integration of Sensing and Communication (ISAC) can integrate wireless sensing into Wi-Fi platforms, providing an efficient method for low-cost indoor localization. Focusing on the problem of real-time and accuracy of indoor positioning parameter estimation, a joint parameter estimation algorithm based on three Dimensional (3D) Matrix Pencil (MP) is proposed. First, the Channel State Information (CSI) data is analyzed and a 3D matrix containing Angle of Arrival (AoA), Time of Flight (ToF), and Doppler Frequency Shift (DFS) is constructed. Secondly, the 3D matrix is smoothed and the 3D MP algorithm is used for parameter estimation, the direct path is found by clustering. Finally, the triangulation method is used for positioning to verify the effectiveness of the proposed algorithm. Experimental results show that compared with the MUltiple SIgnal Classification (MUSIC) parameter estimation algorithm, there is no need for complicated peak search steps, and the computational complexity is reduced by 90%. Compared with the two-dimensional MP algorithm, adding DFS can effectively improve the resolution and accuracy of parameter estimation. The actual test verifies that the proposed algorithm can achieve an average positioning accuracy of 0.56 m at a confidence level of 67% indoors. Therefore, the proposed algorithm effectively improves the real-time and accuracy of the existing indoor positioning parameter estimation.
-
表 1 实验参数
参数名称 符号 数值 接收天线数量 $N$ 4 子载波数量 $M$ 49 包的数量 $B$ 10 矩阵束参数1 ${M_{\rm p}}$ 25 矩阵束参数2 $ {N_{\rm p}} $ 2 矩阵束参数3 $ {B_{\rm p}} $ 5 表 2 实验参数
算法 主要步骤 算法复杂度 参考数值 MUSIC算法 特征值分解 $ \begin{gathered} \left\{ {{{(BMN)}^2}\left( {BMN - q} \right) + {{(BMN - q)}^2}BMN + {{(BMN)}^2}} \right\} \\ \times {\mathrm{sr}}\_{\mathrm{AoA}} \times {\mathrm{sr}}\_{\mathrm{ToF}} \times {\mathrm{sr}}\_{\mathrm{DFS}} \\ \end{gathered} $ 1.25×1016 峰值搜索 2维MP算法 离散傅里叶变换 $ \dfrac{{11}}{4}{({M_{\rm p}}{N_{\rm p}})^3} + 4{({M_{\rm p}}{N_{\rm p}})^2}{K_M}{K_N} $ 1.28×106 奇异值分解 3维MP算法 奇异值分解 $ 11{({B_{\rm p}}{M_{\rm p}}{N_{\rm p}})^3} + 4{({B_{\rm p}}{M_{\rm p}}{N_{\rm p}})^2}2{K_B}{K_M}{K_N} $ 2.84×108 -
[1] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [2] KIM K, KIM J, and JOUNG J. A survey on system configurations of integrated sensing and communication (ISAC) systems[C]. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, The Republic of Korea, 2022: 1176–1178. doi: 10.1109/ICTC55196.2022.9952602. [3] DING Jianyang, WANG Yong, SI Hongyan, et al. Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing[J]. IEEE Internet of Things Journal, 2022, 9(21): 21687–21701. doi: 10.1109/JIOT.2022.3181592. [4] DUBEY A, SOOD P, SANTOS J, et al. An enhanced approach to imaging the indoor environment using WiFi RSSI measurements[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8415–8430. doi: 10.1109/TVT.2021.3101009. [5] LI Fangmin, ZHAO Yubin, LI Xiaofan, et al. Wimage: Crowd sensing based heterogeneous information fusion for indoor localization[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120796. [6] JIN Yue, TIAN Zengshan, ZHOU Mu, et al. MuTrack: Multiparameter based indoor passive tracking system using commodity WiFi[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148887. [7] JIN Yue, TIAN Zengshan, LI Yong, et al. A novel device-free tracking system using WiFi: Turning fading channel from foe to friend[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148609. [8] 田增山, 廉颖慧, 周牧, 等. 基于Wi-Fi多维参数特征的无源目标跟踪技术[J]. 电子学报, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016.TIAN Zengshan, LIAN Yinghui, ZHOU Mu, et al. Passive target tracking technology based on Wi-Fi multi-dimensional parameter feature[J]. Acta Electronica Sinica, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016. [9] WANG Zhe, KONG Linghe, LIU Xue, et al. Embracing channel estimation in multi-packet reception of ZigBee[J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2693–2708. doi: 10.1109/TMC.2021.3131472. [10] ZHUANG Yuan, ZHANG Chongyang, HUAI Jianzhu, et al. Bluetooth localization technology: Principles, applications, and future trends[J]. IEEE Internet of Things Journal, 2022, 9(23): 23506–23524. doi: 10.1109/JIOT.2022.3203414. [11] LIU Zheng, FU Zhe, LI Tongyun, et al. A phase and RSSI-based method for indoor localization using passive RFID system with mobile platform[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 544–551. doi: 10.1109/JRFID.2022.3179620. [12] YU Jintao, XIAO Bing, and LI Jie. Research on UWB indoor location approach in interference environment[C]. 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 2022: 3417–3420. doi: 10.1109/CCDC55256.2022.10034389. [13] 田增山, 未平, 李泽, 等. 基于Wi-Fi的室内实时角度定位算法[J]. 电子学报, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352.TIAN Zengshan, WEI Ping, LI Ze, et al. Indoor real-time localization algorithm based on angle of arrival of Wi-Fi signal[J]. Acta Electronica Sinica, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352. [14] CHEN Longliang, QI Wangdong, YUAN En, et al. Joint 2-D DOA and TOA estimation for multipath OFDM signals based on three antennas[J]. IEEE Communications Letters, 2018, 22(2): 324–327. doi: 10.1109/LCOMM.2017.2769678. [15] NOMURA A, SUGASAKI M, TSUBOUCHI K, et al. Device-free multi-person indoor localization using the change of ToF[C]. 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), Atlanta, USA, 2023: 190–199. doi: 10.1109/PERCOM56429.2023.10099384. [16] TADAYON N, RAHMAN M T, HAN Shuo, et al. Decimeter ranging with channel state information[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3453–3468. doi: 10.1109/TWC.2019.2914194. [17] ZHANG Dongheng, HU Yang, and CHEN Yan. MTrack: Tracking multiperson moving trajectories and vital signs with radio signals[J]. IEEE Internet of Things Journal, 2021, 8(5): 3904–3914. doi: 10.1109/JIOT.2020.3025820. [18] LI Xinyu, ZHANG J A, WU Kai, et al. CSI-ratio-based Doppler frequency estimation in integrated sensing and communications[J]. IEEE Sensors Journal, 2022, 22(21): 20886–20895. doi: 10.1109/JSEN.2022.3208272. [19] XIE Yaxiong, LI Zhenjiang, and LI Mo. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342–1355. doi: 10.1109/TMC.2018.2860991. [20] TAN Bo, BURROWS A, PIECHOCKI R, et al. Wi-Fi based passive human motion sensing for in-home healthcare applications[C]. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 2015: 609–614. doi: 10.1109/WF-IoT.2015.7389123. [21] KHAN U M, KABIR Z, HASSAN S A, et al. A deep learning framework using passive Wi-Fi sensing for respiration monitoring[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8255027. [22] KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: Decimeter level localization using WiFi[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 269–282. doi: 10.1145/2785956.2787487. [23] GABER A and OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440–2454. doi: 10.1109/TWC.2014.2386869. [24] CHEN Zhe, ZHU Guorong, WANG Sulei, et al. M3: Multipath assisted Wi-Fi localization with a single access point[J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 588–602. doi: 10.1109/TMC.2019.2950315. [25] SOLTANAGHAEI E, KALYANARAMAN A, and WHITEHOUSE K. Multipath triangulation: Decimeter-level WiFi localization and orientation with a single unaided receiver[C]. The 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 2018: 376–388. doi: 10.1145/3210240.3210347. [26] YANG Runming, YANG Xiaolong, WANG Jiacheng, et al. Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal, 2022, 22(6): 4940–4950. doi: 10.1109/JSEN.2021.3067144. [27] SHE Yuan, YANG Xiaolong, ZHOU Mu, et al. Three-dimensional joint parameter estimation algorithm based on service antenna[C]. 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2020, 442–447. doi: 10.1109/WCSP49889.2020.9299753. [28] LIU Aijun, GUO Zhichao, and WANG Mingfeng. Time-frequency spatial smoothing MUSIC algorithm for DOA estimation based on co-prime array[C]. Proceedings of 2018 CSPS Volume II: Signal Processing on Communications, Signal Processing, and Systems, Dalian, China, 2020: 1355–1363. doi: 10.1007/978-981-13-6504-1_161. [29] YILMAZER N, KOH J, and SARKAR T K. Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 175–181. doi: 10.1109/TAP.2005.861567. [30] FREY B J and DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976. doi: 10.1126/science.1136800. [31] YANG Xiaolong, GAO Meng, XIE Liangbo, et al. Multi-frequency based CSI compression for vehicle localization in intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3): 2719–2732. doi: 10.1109/TITS.2023.3310032.