高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DNA折纸订书钉链折叠的信息加密策略

侯晓玲 田卓立 王建榜 王丽华 李江 张继超 柳华杰

侯晓玲, 田卓立, 王建榜, 王丽华, 李江, 张继超, 柳华杰. 基于DNA折纸订书钉链折叠的信息加密策略[J]. 电子与信息学报. doi: 10.11999/JEIT231434
引用本文: 侯晓玲, 田卓立, 王建榜, 王丽华, 李江, 张继超, 柳华杰. 基于DNA折纸订书钉链折叠的信息加密策略[J]. 电子与信息学报. doi: 10.11999/JEIT231434
HOU Xiaoling, TIAN Zhuoli, WANG Jianbang, WANG Lihua, LI Jiang, ZHANG Jichao, LIU Huajie. A DNA Origami Cryptography Scheme Based on Staple Folding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231434
Citation: HOU Xiaoling, TIAN Zhuoli, WANG Jianbang, WANG Lihua, LI Jiang, ZHANG Jichao, LIU Huajie. A DNA Origami Cryptography Scheme Based on Staple Folding[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231434

基于DNA折纸订书钉链折叠的信息加密策略

doi: 10.11999/JEIT231434
基金项目: 国家重点研发计划(2020YFA0908900),上海市基础研究特区计划
详细信息
    作者简介:

    侯晓玲:女,博士生,研究方向为DNA计算和DNA自组装

    田卓立:女,硕士生,研究方向为DNA器件和DNA自组装

    王建榜:男,研究员,研究方向为DNA器件和DNA自组装

    王丽华:女,研究员,研究方向为生物传感和DNA自组装

    李江:男,研究员,研究方向为DNA分子机器和DNA自组装

    张继超:男,副研究员,研究方向为同步辐射X射线成像

    柳华杰:男,教授,研究方向为DNA计算和DNA自组装

    通讯作者:

    柳华杰 liuhuajie@tongji.edu.cn

  • 中图分类号: TP301

A DNA Origami Cryptography Scheme Based on Staple Folding

Funds: The National Key R&D Program of China (2020YFA0908900), Shanghai Pilot Program for Basic Research
  • 摘要: DNA折纸结构是蕴含复杂序列折叠信息的纳米结构,为发展具有超大密钥空间的信息加密技术提供了新思路。该文设计了一种能够充分发挥DNA折纸结构信息特征的信息加密策略,与先前利用DNA折纸骨架链折叠的思路不同,该文基于订书钉链集合的非线性组合特征,提出通过探索其更为广阔的折叠多样性来实现更大的密钥空间。该策略的密钥空间计算模型分解为订书钉链的结合域模式、协同折叠以及独立性3个因素,分别考虑了订书钉链的链内区段分布性、链间排布多样性以及序列特异性。以上3种因素的组合,使单位几何空间内DNA折纸的折叠多样性更有效地转化为密钥空间。该策略是一种基于生物分子热力学的加密方式,为扩展信息安全的应用场景提供了新的可能。
  • 图  1  DNA折纸的信息编码方式

    图  2  发送方使用骨架链密钥进行加密

    图  3  分别使用正确及错误的骨架链密钥进行解密

    图  4  订书钉链的结合模式

    图  5  订书钉链的协同折叠

    图  6  订书钉链的序列独立性

  • [1] ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366–370. doi: 10.1038/nmat4594.
    [2] CEZE L, NIVALA J, and STRAUSS K. Molecular digital data storage using DNA[J]. Nature Reviews Genetics, 2019, 20(8): 456–466. doi: 10.1038/s41576-019-0125-3.
    [3] BENENSON Y, PAZ-ELIZUR T, ADAR R, et al. Programmable and autonomous computing machine made of biomolecules[J]. Nature, 2001, 414(6862): 430–434. doi: 10.1038/35106533.
    [4] 王君珂, 印珏, 牛人杰, 等. DNA计算与DNA纳米技术[J]. 电子与信息学报, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.

    WANG Junke, YIN Jue, NIU Renjie, et al. DNA computing and DNA nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.
    [5] PENCHOVSKY R and BREAKER R R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J]. Nature Biotechnology, 2005, 23(11): 1424–1433. doi: 10.1038/nbt1155.
    [6] QIAN Lulu and WINFREE E. Scaling up digital circuit computation with DNA strand displacement cascades[J]. Science, 2011, 332(6034): 1196–1201. doi: 10.1126/science.1200520.
    [7] 殷志祥, 唐震, 张强, 等. 基于DNA折纸基底的与非门计算模型[J]. 电子与信息学报, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825.

    YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825.
    [8] CLELLAND C T, RISCA V, and BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092.
    [9] JONOSKA N, PĂUN G, and ROZENBERG G. Aspects of Molecular Computing: Essays Dedicated to Tom Head on the Occasion of His 70th Birthday[M]. Berlin: Springer, 2004: 167–188. doi: 10.1007/b94864.
    [10] LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi: 10.1016/S0303-2647(00)00083-6.
    [11] LUSTGARTEN O, MOTIEI L, and MARGULIES D. User authorization at the molecular scale[J]. ChemPhysChem, 2017, 18(13): 1678–1687. doi: 10.1002/cphc.201700506.
    [12] NUMMELIN S, KOMMERI J, KOSTIAINEN M A, et al. Evolution of structural DNA nanotechnology[J]. Advanced Materials, 2018, 30(24): 1703721. doi: 10.1002/adma.201703721.
    [13] SEEMAN N C. Nucleic acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237–247. doi: 10.1016/0022-5193(82)90002-9.
    [14] FU T J and SEEMAN N C. DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13): 3211–3220. doi: 10.1021/bi00064a003.
    [15] LABEAN T H, YAN Hao, KOPATSCH J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes[J]. Journal of the American Chemical Society, 2000, 122(9): 1848–1860. doi: 10.1021/ja993393e.
    [16] REISHUS D, SHAW B, BRUN Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures[J]. Journal of the American Chemical Society, 2005, 127(50): 17590–17591. doi: 10.1021/ja0557177.
    [17] KE Yonggang, LIU Yan, ZHANG Junping, et al. A study of DNA tube formation mechanisms using 4-, 8-, and 12-Helix DNA nanostructures[J]. Journal of the American Chemical Society, 2006, 128(13): 4414–4421. doi: 10.1021/ja058145z.
    [18] ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297–302. doi: 10.1038/nature04586.
    [19] OBER M F, BAPTIST A, WASSERMANN L, et al. In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification[J]. Nature Communications, 2022, 13(1): 5668. doi: 10.1038/s41467-022-33083-5.
    [20] DAI Xinpei, CHEN Xiaoliang, JING Xinxin, et al. DNA origami-encoded integration of heterostructures[J]. Angewandte Chemie International Edition, 2022, 61(11): e202114190. doi: 10.1002/anie.202114190.
    [21] ZHAO Yumeng, ZHANG Chao, YANG Linlin, et al. Programmable and site-specific patterning on DNA origami templates with heterogeneous condensation of silver and silica[J]. Small, 2021, 17(47): 2103877. doi: 10.1002/smll.202103877.
    [22] HANNEWALD N, WINTERWERBER P, ZECHEL S, et al. DNA origami meets polymers: A powerful tool for the design of defined nanostructures[J]. Angewandte Chemie International Edition, 2021, 60(12): 6218–6229. doi: 10.1002/anie.202005907.
    [23] ARYAL B R, RANASINGHE D R, PANG Chao, et al. Annealing of polymer-encased nanorods on DNA origami forming metal–semiconductor nanowires: Implications for nanoelectronics[J]. ACS Applied Nano Materials, 2021, 4(9): 9094–9103. doi: 10.1021/acsanm.1c01682.
    [24] MADSEN M, BAKKE M R, GUDNASON D A, et al. A single molecule polyphenylene-vinylene photonic wire[J]. ACS Nano, 2021, 15(6): 9404–9411. doi: 10.1021/acsnano.0c10922.
    [25] YANG Yunqi, LU Qinyi, HUANG Chaomin, et al. Programmable site-specific functionalization of DNA origami with polynucleotide brushes[J]. Angewandte Chemie International Edition, 2021, 60(43): 23241–23247. doi: 10.1002/anie.202107829.
    [26] KAHN J S, XIONG Yan, HUANG J, et al. Cascaded enzyme reactions over a three-dimensional, wireframe DNA origami scaffold[J]. JACS Au, 2022, 2(2): 357–366. doi: 10.1021/jacsau.1c00387.
    [27] WANG S T, MINEVICH B, LIU Jianfang, et al. Designed and biologically active protein lattices[J]. Nature Communications, 2021, 12(1): 3702. doi: 10.1038/s41467-021-23966-4.
    [28] ZHAO Shuai, TIAN Run, WU Jun, et al. A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis[J]. Nature Communications, 2021, 12(1): 358. doi: 10.1038/s41467-020-20638-7.
    [29] 孙彤, 刘文静, 张萍, 等. 基于DNA折纸的单个链霉亲和素分子的原子力显微术高分辨成像[J]. 核技术, 2019, 42(4): 040501. doi: 10.11889/j.0253-3219.2019.hjs.42.040501.

    SUN Tong, LIU Wenjing, ZHANG Ping, et al. High-resolution imaging of single-molecule streptavidin using atomic force microscopy based on DNA origami[J]. Nuclear Techniques, 2019, 42(4): 040501. doi: 10.11889/j.0253-3219.2019.hjs.42.040501.
    [30] YE Jingjing, AFTENIEVA O, BAYRAK T, et al. Complex metal nanostructures with programmable shapes from simple DNA building blocks[J]. Advanced Materials, 2021, 33(29): 2100381. doi: 10.1002/adma.202100381.
    [31] RYSSY J, NATARAJAN A K, WANG Jinhua, et al. Light-responsive dynamic DNA-origami-based plasmonic assemblies[J]. Angewandte Chemie, 2021, 133(11): 5923–5927. doi: 10.1002/ange.202014963.
    [32] MA Yuxuan, LU Zhangwei, JIA Bin, et al. DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging[J]. ACS Nano, 2022, 16(8): 12520–12531. doi: 10.1021/acsnano.2c03991.
    [33] COMBERLATO A, KOGA M M, NÜSSING S, et al. Spatially controlled activation of toll-like receptor 9 with DNA-based nanomaterials[J]. Nano Letters, 2022, 22(6): 2506–2513. doi: 10.1021/acs.nanolett.2c00275.
    [34] KNAPPE G A, WAMHOFF E C, READ B J, et al. In situ covalent functionalization of DNA origami virus-like particles[J]. ACS Nano, 2021, 15(9): 14316–14322. doi: 10.1021/acsnano.1c03158.
    [35] CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing[J]. Nature Nanotechnology, 2017, 12(9): 920–927. doi: 10.1038/nnano.2017.127.
    [36] THUBAGERE A J, LI Wei, JOHNSON R F, et al. A cargo-sorting DNA robot[J]. Science, 2017, 357(6356): eaan6558. doi: 10.1126/science.aan6558.
    [37] LIU Fengsong, LI Na, SHANG Yingxu, et al. A DNA-based plasmonic nanodevice for cascade signal amplification[J]. Angewandte Chemie International Edition, 2022, 61(22): e202114706. doi: 10.1002/anie.202114706.
    [38] ZHANG Yinan, WANG Fei, CHAO Jie, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10(1): 5469. doi: 10.1038/s41467-019-13517-3.
    [39] STALLINGS W. The advanced encryption standard[J]. Cryptologia, 2002, 26(3): 165–188. doi: 10.1080/0161-110291890876.
  • 加载中
图(6)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-07-16
  • 网络出版日期:  2024-07-24

目录

    /

    返回文章
    返回