高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向同频干扰环境的5G机会信号定位算法研究

孙骞 丁天语 简鑫 李一兵 于飞

孙骞, 丁天语, 简鑫, 李一兵, 于飞. 面向同频干扰环境的5G机会信号定位算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT231423
引用本文: 孙骞, 丁天语, 简鑫, 李一兵, 于飞. 面向同频干扰环境的5G机会信号定位算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT231423
SUN Qian, DING Tianyu, JIAN Xin, LI Yibing, YU Fei. Research on Opportunistic Localization with 5G Signals in Co-channel Interference Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231423
Citation: SUN Qian, DING Tianyu, JIAN Xin, LI Yibing, YU Fei. Research on Opportunistic Localization with 5G Signals in Co-channel Interference Environments[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231423

面向同频干扰环境的5G机会信号定位算法研究

doi: 10.11999/JEIT231423
基金项目: 国家自然科学基金(52271311)
详细信息
    作者简介:

    孙骞:男,教授,研究方向为通导一体化技术

    丁天语:男,硕士生,研究方向为机会信号导航技术

    简鑫:男,硕士生,研究方向为机会信号导航技术

    李一兵:男, 教授,研究方向为通导一体化技术

    于飞:男, 教授,研究方向为机会信号导航技术

    通讯作者:

    孙骞 qsun@hrbeu.edu.cn

  • 中图分类号: TN911.7; TN96

Research on Opportunistic Localization with 5G Signals in Co-channel Interference Environments

Funds: The National Natural Science Foundation of China (52271311)
  • 摘要: 针对全球导航卫星系统(GNSS)拒止环境下定位精度难以保证的问题,该文设计了一种基于新无线电(NR)机会信号的定位方案,并提出一种基于干扰消除子空间追踪(ICSP)算法,解决超密集网络(UDNs)和异构网络(HetNets)环境中同频干扰对定位观测量提取精度不足的问题。通过仿真实验和通用软件无线电外设(USRP)半实物仿真,验证了ICSP算法在复杂网络环境中优化5G机会信号接收机性能、提高定位精度上的有效性。
  • 图  1  追踪环路原理框图

    图  2  场景1恢复能力评估

    图  3  场景2恢复能力评估

    图  4  实验设备及环境

    图  5  实地基站图

    图  6  实测定位覆盖率

    图  7  伪距测量值图

    图  8  定位结果图

    表  1  算法复杂度

    算法所需乘法次数
    SIC$ KCNL{\text{ + }}K{N^2} $
    SCP$ KCNL{\text{ + }}N({K^3}{L^2} + {K^2}L) + O({L^3}) $
    ICSP$ KCNL{\text{ + }}N({K^3}{L^2} + {K^2}L{\text{ + }}N){\text{ + }}O({L^3}) $
    下载: 导出CSV

    表  2  基站基本参数

    基站ID号纬度(°)经度(°)高度(m)中心频率(MHz)运营商
    41845.769 187 53126.674 699 26181.3713 509.76中国联通
    34845.771 155 50126.678 329 04152.9633 509.76中国联通
    4745.771 806 62126.674 012 97150.7583 509.76中国联通
    1145.770 464 10126.676 657 18132.2313 509.76虚拟基站
    下载: 导出CSV

    表  3  实验接收参数

    参数名称参数值
    USRP接收带宽10 ${\text{MHz}}$
    采样率30.72 $ {\text{MSps}} $
    晶振类型温补晶振(Temperature Compensated Crystal Oscillator, TCXO)
    同步精度30 $ {\text{ns}} $
    中心频率3509.76 $ {\text{MHz}} $
    下载: 导出CSV
  • [1] Defense Advanced Research Projects Agency (DARPA). Adaptable navigation systems[EB/OL]. https://www.darpa.mil/program/adaptable-navigation-systems, 2023.
    [2] EL-SHEIMY N and LI You. Indoor navigation: State of the art and future trends[J]. Satellite Navigation, 2021, 2(1): 7. doi: 10.1186/S43020-021-00041-3.
    [3] OBEIDAT H, SHUAIEB W, OBEIDAT O, et al. A review of indoor localization techniques and wireless technologies[J]. Wireless Personal Communications, 2021, 119(1): 289–327. doi: 10.1007/s11277-021-08209-5.
    [4] SHARMA N and KUMAR K. Resource allocation trends for ultra dense networks in 5G and beyond networks: A classification and comprehensive survey[J]. Physical Communication, 2021, 48: 101415. doi: 10.1016/j.phycom.2021.101415.
    [5] STOYNOV V, POULKOV V, VALKOVA-JARVIS Z, et al. Ultra-dense networks: Taxonomy and key performance indicators[J]. Symmetry, 2023, 15(1): 2. doi: 10.3390/sym15010002.
    [6] RAJAMOHAN N and KANNU A P. Downlink synchronization techniques for heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2015, 63(11): 4448–4460. doi: 10.1109/TCOMM.2015.2474381.
    [7] GOWDA N M and KANNU A P. Compressive sensing framework for signal processing in heterogeneous cellular networks[C]. 2012 IEEE Global Communications Conference, Anaheim, USA, 2012: 3610–3615. doi: 10.1109/GLOCOM.2012.6503676.
    [8] 王旭东, 刘帅, 吴楠. CAEFi: 基于卷积自编码器降维的信道状态信息指纹室内定位方法[J]. 电子与信息学报, 2022, 44(8): 2757–2766. doi: 10.11999/JEIT210663.

    WANG Xudong, LIU Shuai, and WU Nan. CAEFI: Channel state information fingerprint indoor location method using convolutional autoencoder for dimension reduction[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2757–2766. doi: 10.11999/JEIT210663.
    [9] 刘凯凯, 田增山, 李泽, 等. 仓储场景中基于无线标签的三维定位方法[J]. 电子与信息学报, 2023, 45(12): 4218–4227. doi: 10.11999/JEIT221269.

    LIU Kaikai, TIAN Zengshan, LI Ze, et al. 3-D localization method based on wireless tags in warehouse scenarios[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4218–4227. doi: 10.11999/JEIT221269.
    [10] JIANG Feng, ZHANG Zhenkai, and NAJAFABADI H E. Deep sea TDOA localization method based on improved OMP algorithm[J]. IEEE Access, 2019, 7: 168151–168161. doi: 10.1109/ACCESS.2019.2954330.
    [11] SHAMAEI K and KASSAS Z M. Receiver design and time of arrival estimation for opportunistic localization with 5G signals[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4716–4731. doi: 10.1109/TWC.2021.3061985.
    [12] CHEN Liang, ZHOU Xin, CHEN Feifei, et al. Carrier phase ranging for indoor positioning with 5G NR signals[J]. IEEE Internet of Things Journal, 2021, 9(13): 10908–10919. doi: 10.1109/JIOT.2021.3125373.
    [13] GOWDA N M and KANNU A P. Interferer identification in hetnets using compressive sensing framework[J]. IEEE Transactions on Communications, 2013, 61(11): 4780–4787. doi: 10.1109/TCOMM.2013.092813.130196.
    [14] RAJAMOHAN N, JOSHI A, and KANNU A P. Joint block sparse signal recovery problem and applications in LTE cell search[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 1130–1143. doi: 10.1109/TVT.2016.2552247.
    [15] SHAMAEI K. Exploiting cellular signals for navigation: 4G to 5G[D]. [Ph. D. dissertation], University of California, 2020.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  63
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-03-15
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回