高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率谱密度消频散变换被动估计脉冲声源距离

刘建设 朱广平 殷敬伟 陈文剑 孙辉

刘建设, 朱广平, 殷敬伟, 陈文剑, 孙辉. 功率谱密度消频散变换被动估计脉冲声源距离[J]. 电子与信息学报, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408
引用本文: 刘建设, 朱广平, 殷敬伟, 陈文剑, 孙辉. 功率谱密度消频散变换被动估计脉冲声源距离[J]. 电子与信息学报, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408
LIU Jianshe, ZHU Guangping, YIN Jingwei, CHEN Wenjian, SUN Hui. Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408
Citation: LIU Jianshe, ZHU Guangping, YIN Jingwei, CHEN Wenjian, SUN Hui. Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3592-3601. doi: 10.11999/JEIT231408

功率谱密度消频散变换被动估计脉冲声源距离

doi: 10.11999/JEIT231408
基金项目: 国家重点研发计划项目 (2021YFC2801200)
详细信息
    作者简介:

    刘建设:男,博士生,研究方向为水声信号处理

    朱广平:男,副教授,研究方向为水声目标探测

    殷敬伟:男,教 授,研究方向为水声通信

    陈文剑:男,副教授,研究方向为水声目标散射

    孙辉:男,教 授,研究方向为水声物理

    通讯作者:

    朱广平 guangpingzhu@hrbeu.edu.cn

  • 中图分类号: TN929.3

Passive Pulse Source Ranging Using De-dispersion Transform of Power Spectral Density

Funds: The National Key Research and Development Program of China (2021YFC2801200)
  • 摘要: 浅海中传播的低频声波具有多模态特征和频散效应。对接收声信号消频散变换(DDT)可以消除频散效应,实现被动估计声源距离。针对消频散变换存在的测距多值问题,该文提出一种利用功率谱密度消频散变换的被动测距方法(PSD-DDT)。首先使用声场模型KRAKEN计算模态的水平波数;其次在只知道波导不变量大概范围的情况下,估计两个模态之间的频散常数;然后对保留了模态间干涉项的功率谱密度进行消频散变换;最后获得目标距离的估计值为PSD-DDT极大值对应的自变量与频散常数的比值。另外,当海洋参数未知时,需要分别对待测声源和引导声源进行PSD-DDT,利用自变量的比值确定声源距离,这种方法不需要估计频散常数。通过仿真和海试验证了PSD-DDT方法被动测距的有效性,并分析了波导不变量、模态阶数、噪声等因素对距离估计结果的影响。基于黄海试验结果,与DDT方法相比,PSD-DDT的测距误差下降了约49.2%。在35 km范围内最优波导不变量对应的平均相对误差约2.55%,被动测距精度较高。
  • 图  1  信号仿真

    图  2  20 km信号的DDT结果

    图  3  模态频散常数估计

    图  4  PSD-DDT结果

    图  5  海上试验概况

    图  6  引导声源

    图  7  引导声源的PSD-DDT结果

    图  8  测距结果对比

    表  1  仿真参数

    深度(m)声速(m/s)密度(g/cm3)衰减(dB/λ)
    海水6015001.00
    海底17001.80.2
    下载: 导出CSV

    表  2  波导常数估计结果

    m-n阶数 $ \beta $ $ {\gamma _{{mn}}} $ 拟合指标R2
    1-2 1.136 2.273 0.9997
    2-3 1.085 5.186 0.9999
    1-2 1.111 2.616 0.9985
    2-3 4.478 0.9998
    1-2 1.200 1.646 0.9444
    2-3 2.816 0.9254
    下载: 导出CSV

    表  3  PSD-DDT测距结果: $ \beta $=1.111

    真实距离(km)r12(km)误差(%)r23(km)误差(%)测距均值平均误差(%)
    2019.492.5320.321.6219.910.46
    4038.992.5340.641.6239.820.46
    6059.241.2660.741.2559.990.01
    8079.880.1480.851.0680.370.46
    10099.760.24101.841.84100.800.80
    下载: 导出CSV

    表  4  PSD-DDT测距结果: $ \beta $=1.200

    真实距离(km)r12(km)误差(%)r23(km)误差(%)测距均值平均误差(%)
    2020.663.2921.668.3221.165.80
    4041.924.8143.338.3242.626.56
    6062.584.3164.637.7263.616.01
    8083.854.8185.947.4384.906.12
    100105.125.12106.896.89106.016.01
    下载: 导出CSV

    表  5  测距方法评价

    测距方法MAE(km)RMSE(km)MRE(%)
    DDT($ \beta $= 1)3.224.3612.03
    PSD-DDT($ \beta $= 1)1.522.106.11
    PSD-DDT($ \beta $= 1.2)0.711.332.55
    下载: 导出CSV
  • [1] FERREIRA B M, GRAÇA P A, ALVES J C, et al. Single receiver underwater localization of an unsynchronized periodic acoustic beacon using synthetic baseline[J]. IEEE Journal of Oceanic Engineering, 2023, 48(4): 1112–1126. doi: 10.1109/JOE.2023.3275611.
    [2] DE MARCO R, DI NARDO F, LUCCHETTI A, et al. The development of a low-cost hydrophone for passive acoustic monitoring of dolphin’s vocalizations[J]. Remote Sensing, 2023, 15(7): 1946. doi: 10.3390/rs15071946.
    [3] LIU Wei, XU Guojun, CHENG Xinghua, et al. A novel finite difference scheme for normal mode models in underwater acoustics[J]. Journal of Marine Science and Engineering, 2023, 11(3): 553. doi: 10.3390/jmse11030553.
    [4] ALTAHER A S, ZHUANG Hanqi, IBRAHIM A K, et al. Detection and localization of goliath grouper using their low-frequency pulse sounds[J]. The Journal of the Acoustical Society of America, 2023, 153(4): 2190. doi: 10.1121/10.0017804.
    [5] HUNTER AKINS F, KUPERMAN W A. Range-coherent matched field processing for low signal-to-noise ratio localization[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 270–280. doi: 10.1121/10.0005586.
    [6] BROWN M G. Time-warping in underwater acoustic waveguides[J]. The Journal of the Acoustical Society of America, 2020, 147(2): 898–910. doi: 10.1121/10.0000693.
    [7] BONNEL J, LE TOUZE G, NICOLAS B, et al. Automatic and passive whale localization in shallow water using gunshots[C]. Oceans 2008, Quebec City, Canada, 2008: 1–6. doi: 10.1109/OCEANS.2008.5151937.
    [8] 李晓曼, 张明辉, 张海刚, 等. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法[J]. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302.

    LI Xiaoman, ZHANG Minghui, ZHANG Haigang, et al. A passive range method of broadband impulse source based on matched-mode processing[J]. Acta Physica Sinica, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302.
    [9] LI Xiaoman, PIAO Shengchun, ZHANG Minghui, et al. A passive source location method in a shallow water waveguide with a single sensor based on Bayesian theory[J]. Sensors, 2019, 19(6): 1452. doi: 10.3390/s19061452.
    [10] BONNEL J, LIN Y T, ELEFTHERAKIS D, et al. Geoacoustic inversion on the New England Mud Patch using warping and dispersion curves of high-order modes[J]. The Journal of the Acoustical Society of America, 2018, 143(5): EL405–EL411. doi: 10.1121/1.5039769.
    [11] BONNEL J, THODE A, WRIGHT D, et al. Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone[J]. The Journal of the Acoustical Society of America, 2020, 147(3): 1897–1926. doi: 10.1121/10.0000937.
    [12] ZHOU Shihong, QI Yubo, and REN Yun. Frequency invariability of acoustic field and passive source range estimation in shallow water[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(2): 225–232. doi: 10.1007/s11433-013-5359-z.
    [13] 戚聿波, 周士弘, 张仁和, 等. 一种基于β-warping变换算子的被动声源距离估计方法[J]. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301.

    QI Yubo, ZHOU Shihong, ZHANG Renhe, et al. A passive source ranging method using the waveguide-invariant-warping operator[J]. Acta Physica Sinica, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301.
    [14] 王冬, 郭良浩, 刘建军, 等. 一种基于warping变换的浅海脉冲声源被动测距方法[J]. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302.

    WANG Dong, GUO Lianghao, LIU Jianjun, et al. Passive impulsive source range estimation based on warping operator in shallow water[J]. Acta Physica Sinica, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302.
    [15] 孙凯, 高大治, 高德洋, 等. 多普勒频移和干涉谱联合的水声目标运动参数估计[J]. 声学学报, 2023, 48(1): 50–59. doi: 10.15949/j.cnki.0371-0025.2023.01.001.

    SUN Kai, GAO Dazhi, GAO Deyang, et al. Estimation of motion parameters of underwater acoustic targets by combining Doppler shift and interference spectrum[J]. Acta Acustica, 2023, 48(1): 50–59. doi: 10.15949/j.cnki.0371-0025.2023.01.001.
    [16] 孟瑞洁, 周士弘, 戚聿波. 浅海中运动声源径向速度与距离的无源估计[J]. 声学学报, 2021, 46(6): 983–996. doi: 10.15949/j.cnki.0371-0025.2021.06.019.

    MENG Ruijie, ZHOU Shihong, and QI Yubo. Passive radial velocity and range estimation of a moving source in shallow water[J]. Acta Acustica, 2021, 46(6): 983–996. doi: 10.15949/j.cnki.0371-0025.2021.06.019.
    [17] WILCOX P D. A rapid signal processing technique to remove the effect of dispersion from guided wave signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(4): 419–427. doi: 10.1109/TUFFC.2003.1197965.
    [18] GAO Dazhi, WANG Ning, and WANG Haozhong. A dedispersion transform for sound propagation in shallow water waveguide[J]. Journal of Computational Acoustics, 2010, 18(3): 245–257. doi: 10.1142/S0218396X10004188.
    [19] YANG Guangbing, LÜ Liangang, GAO Dazhi, et al. A dedispersion transform method for extracting the normal modes of a shallow water acoustic signal in the Pekeris waveguide[J]. Archives of Acoustics, 2015, 40(1): 11–18. doi: 10.1515/aoa-2015-0002.
    [20] 胡春晖, 王好忠, 袁博涵, 等. 消频散阵不变量距离估计方法[J]. 声学学报, 2022, 47(3): 309–320. doi: 10.15949/j.cnki.0371-0025.2022.03.007.

    HU Chunhui, WANG Haozhong, YUAN Bohan, et al. Source ranging using the dispersionless array invariant[J]. Acta Acustica, 2022, 47(3): 309–320. doi: 10.15949/j.cnki.0371-0025.2022.03.007.
    [21] 郭晓乐, 杨坤德, 马远良, 等. 一种基于简正波模态消频散变换的声源距离深度估计方法[J]. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302.

    GUO Xiaole, YANG Kunde, MA Yuanliang, et al. A source range and depth estimation method based on modal dedispersion transform[J]. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302.
    [22] JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational Ocean Acoustics[M]. 2nd ed. New York: Springer, 2011: 337–341. doi: 10.1007/978-1-4419-8678-8.
    [23] SUN Kai, GAO Dazhi, ZHAO Xiaojing, et al. Estimation of target motion parameters from the tonal signals with a single hydrophone[J]. Sensors, 2023, 23(15): 6881. doi: 10.3390/s23156881.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  66
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-07-04
  • 网络出版日期:  2024-08-02
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回