Channel State Information Restoration and Positioning of massive Multiple Input Multiple Output Integrated Visible Light Communication and Sensing System
-
摘要: 得益于丰富的频谱和光源,可见光通信感知一体化(IVLCP)系统为解决高性能通信定位的室内无线网络需求提供强有力的技术支撑。同时,大规模多输入多输出(m-MIMO)技术能有效提高IVLCP网络的服务范围和质量。然而,m-MIMO赋能的IVLCP网络的信道环境更加复杂且先验信息更易变化,这使得传统方法难以快速准确地完成信道估计和定位。针对此,该文提出一种信道状态信息还原和定位(CSIRP)网络,该网络不仅能够有效地捕捉复杂分布的可见光通信信道特征,同时能够应对信道状态的时变性,从而提高信道和位置估计的鲁棒性和动态适应性。具体而言,CSIRP网络首先基于条件生成对抗思想自适应训练生成器和鉴别器,进而实现根据接收信号进行信道估计,接着结合长短期记忆网络(LSTM)从估计的信道中获取接收终端的位置估计值。仿真结果表明,采用CSIRP网络所获得的信道状态准确度和定位精度均优于现有的深度学习参考方法,这为m-MIMO赋能的IVLCP系统提供了可靠和精准的信道状态信息和位置感知能力。Abstract: Benefiting from rich spectrum and lamps, Integrated Visible Light Communication and Positioning (IVLCP) systems provide powerful technological solution to meet the high performance communication and positioning in indoor wireless networks. Meanwhile, the massive Multiple Input Multiple Output (m-MIMO) effectively enhance both service coverage and quality of IVLCP systems. However, the channel environment is more complex and the priori information rapidly changed in the m-MIMO-enabled IVLCP systems, making traditional methods challenging for fast and accurate channel estimation and positioning. In order to tackle this challenge, a Channel State Information Restoration and Positioning (CSIRP) network is proposed in this paper. The network not only effectively captures complex distribution feature of channel but also addresses the temporal variations in location, thereby enhancing the robustness and dynamic adaptability of channel and location estimation. Specifically, the CSIRP network employs a conditional generative adversarial process to adaptively train the generator and discriminatorr and thus achieves the channel estimation from the received signals. Then, the Long Short-Term Memory(LSTM) is introduced to estimate the location of the receiver from the estimated channel. Simulation results demonstrate that the accuracy of both channel and location estimation achieved by the proposed CSIRP network outperforms existing deep learning benchmark schemes. This provides m-MIMO-enabled IVLCP systems with more reliable and accurate channel state information and positioning.
-
表 1 所考虑场景的参数设置
参数 名称 数值 参数 名称 数值 ${N_{\text{r}}}$ PD阵列 64 ${\phi _{{\text{oc}}}}$ PD的视场角 70° $\tau $ 导频序列长度 8 ${\beta _{{\text{semi}}}}$ 半功率角 60° ${A_{\text{r}}}$ PD的有效光电接收区域面积 1 cm2 $ n $ OC的折射率 1.5 表 2 网络模型性能比较
网络模型 模型深度
(层)平均定位
误差(cm)收敛时的
RMSE
(×10–2)收敛时的
损失(×10–2)CSIRP 28 5.29 1.59 0.02 FFDNet-LSTM 24 14.28 4.71 1.09 CGAN-DNN 25 23.72 8.13 3.78 CGAN-CNN 31 125.74 84.28 25.26 -
[1] 赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. SCIENTIA SINICA Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033. [2] LIU Xiaodong, CHEN Zezong, WANG Yuhao, et al. BER analysis of NOMA-enabled visible light communication systems with different modulations[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10807–10821. doi: 10.1109/TVT.2019.2938909. [3] 王玉皞, 曹凡, 邓震宇, 等. 可见光通信中LED非线性补偿和带宽拓展技术[J]. 光电工程, 2020, 47(3): 190671. doi: 10.12086/oee.2020.190671.WANG Yuhao, CAO Fan, DENG Zhenyu, et al. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671. doi: 10.12086/oee.2020.190671. [4] 施剑阳, 牛文清, 徐增熠, 等. 面向6G的可见光通信关键技术[J]. 无线电通信技术, 2021, 47(6): 692–697. doi: 10.3969/j.issn.1003-3114.2021.06.003.SHI Jianyang, NIU Wenqing, XU Zengyi, et al. Key technology of visible light communication towards 6G[J]. Radio Communications Technology, 2021, 47(6): 692–697. doi: 10.3969/j.issn.1003-3114.2021.06.003. [5] MA Shuai, CAO Shiyu, LI Hang, et al. Waveform design and optimization for integrated visible light positioning and communication[J]. IEEE Transactions on Communications, 2023, 71(9): 5392–5407. doi: 10.1109/TCOMM.2023.3287536. [6] 朱蔓菁, 王玉皞, 刘晓东. 可见光通信中继技术研究[J]. 光通信研究, 2021(3): 64–71. doi: 10.13756/j.gtxyj.2021.03.014.ZHU Manjing, WANG Yuhao, and LIU Xiaodong. Research on relay technology of visible light communication[J]. Study on Optical Communications, 2021(3): 64–71. doi: 10.13756/j.gtxyj.2021.03.014. [7] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761. [8] HUSSEIN Y S, ALIAS M Y, and ABDULKAFI A A. On performance analysis of LS and MMSE for channel estimation in VLC systems[C]. 2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA), Melaka, Malaysia, 2016: 204–209. doi: 10.1109/CSPA.2016.7515832. [9] CHEN Xianyu and JIANG Ming. Enhanced Bayesian MMSE channel estimation for visible light communication[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794762. [10] LIN Bangjiang, GHASSEMLOOY Z, XU Junxiang, et al. Experimental demonstration of compressive sensing-based channel estimation for MIMO-OFDM VLC[J]. IEEE Wireless Communications Letters, 2020, 9(7): 1027–1030. doi: 10.1109/LWC.2020.2979177. [11] GAO Zhipeng, WANG Yuhao, LIU Xiaodong, et al. FFDNet-based channel estimation for massive MIMO visible light communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(3): 340–343. doi: 10.1109/LWC.2019.2954511. [12] PALITHARATHNA K W S, SURAWEERA H A, GODALIYADDA R I, et al. Neural network-based channel estimation and detection in spatial modulation VLC systems[J]. IEEE Communications Letters, 2022, 26(7): 1598–1602. doi: 10.1109/LCOMM.2022.3166221. [13] HAO Xiaolong, SUN Wenjing, CHEN Jian, et al. Vertical measurable displacement approach for altitude accuracy improvement in 3D visible light positioning[J]. Optics Communications, 2021, 490: 126914. doi: 10.1016/j.optcom.2021.126914. [14] ZHU Bingcheng, CHENG Julian, WANG Yongjin, et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(1): 8–22. doi: 10.1109/JSAC.2017.2774435. [15] SHEIKH S M, ASIF H M, RAAHEMIFAR K, et al. Time difference of arrival based indoor positioning system using visible light communication[J]. IEEE Access, 2021, 9: 52113–52124. doi: 10.1109/ACCESS.2021.3069793. [16] ZHOU Yingjun, XU Yinfan, WANG Zhixin, et al. MIMO VLC positioning system based on LEDs utilizing diversity reception technology[C]. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 2015: 1–4. doi: 10.1109/WCSP.2015.7341211. [17] OH S H and KIM J G. VLC positioning by DNN via WkNN in indoor environment[C]. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 2022: 450–453. doi: 10.1109/ICUFN55119.2022.9829653. [18] CHENG Yue, SHAO Jianhua, and WU Ruiqi. Compressive sensing optimization algorithm for indoor visible light 3D positioning[J]. Journal of Physics:Conference Series, 2023, 2617: 012002. doi: 10.1088/1742-6596/2617/1/012002. [19] ZHENG Xuanyu, LIU An, and LAU V. Joint channel and location estimation of massive MIMO system with phase noise[J]. IEEE Transactions on Signal Processing, 2020, 68: 2598–2612. doi: 10.1109/TSP.2020.2986551. [20] WEI Tiankuo, LIU Sicong, and DU Xiaojiang. Visible light integrated positioning and communication: A multi-task federated learning framework[J]. IEEE Transactions on Mobile Computing, 2023, 22(12): 7086–7103. doi: 10.1109/TMC.2022.3207164. [21] WEI D and LIU Han. Stereo matching algorithm based on CGAN[C]. 2021 China Automation Congress (CAC), Beijing, China, 2021: 5607–5612. doi: 10.1109/CAC53003.2021.9728455. [22] KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018, 6: 1662–1669. doi: 10.1109/ACCESS.2017.2779939.