高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代二次优化算法的低截获波形序列设计

刘强 张敏 郭福成 殷加鹏 胡卫东

刘强, 张敏, 郭福成, 殷加鹏, 胡卫东. 基于迭代二次优化算法的低截获波形序列设计[J]. 电子与信息学报, 2024, 46(5): 2048-2056. doi: 10.11999/JEIT231333
引用本文: 刘强, 张敏, 郭福成, 殷加鹏, 胡卫东. 基于迭代二次优化算法的低截获波形序列设计[J]. 电子与信息学报, 2024, 46(5): 2048-2056. doi: 10.11999/JEIT231333
LIU Qiang, ZHANG Min, GUO FuCheng, YIN JiaPeng, HU WeiDong. Low-intercept Waveform Sequence Design Based on Iterative Quadratic Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2048-2056. doi: 10.11999/JEIT231333
Citation: LIU Qiang, ZHANG Min, GUO FuCheng, YIN JiaPeng, HU WeiDong. Low-intercept Waveform Sequence Design Based on Iterative Quadratic Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2048-2056. doi: 10.11999/JEIT231333

基于迭代二次优化算法的低截获波形序列设计

doi: 10.11999/JEIT231333
详细信息
    作者简介:

    刘强:男,博士生,研究方向为电子对抗技术、雷达信号处理、雷达波形设计等

    张敏:男,副教授,研究方向为波形设计,无源定位技术、信号处理技术,雷达波形设计等

    郭福成:男,教授,研究方向为无源定位和跟踪、雷达信号处理。波形设计等

    殷加鹏:男,副研究员,研究方向为主要研究方向为极化雷达信号处理,雷达波形设计等

    胡卫东:男,教授,研究方向为波形设计,雷达信息处理与目标识别、多源信息融合等

    通讯作者:

    张敏 zhangmin1984@126.com

  • 中图分类号: TN958

Low-intercept Waveform Sequence Design Based on Iterative Quadratic Optimization Algorithm

  • 摘要: 对抗条件下,低截获雷达通过发射特殊波形防止非合作电子侦察系统截获和检测其发射信号,是现代雷达技术的重点研究方向。该文旨在降低电子侦察系统的功率截获概率,在保证目标的辐射能量基础上,针对短时傅里叶变换(STFT)宽带数字侦察接收机特点,从能量的时频分布的角度将波形设计技术应用到无源对抗领域。首先,建立STFT宽带数字侦察接收机检测低截获模型,利用2次优化模型,将低截获问题转变为恒包络序列迭代优化问题;然后,为了获得较好的自相关性能,利用辅助标量,将优化模型转化为2次和形式,结合迭代算法得到了所提低截获波形序列;最后,讨论了计算复杂度。从仿真结果上看,所提序列比常见相位编码信号在相同的接收信噪比下具有更优的低截获能力,另外,引入Pareto权对所提序列的自相关特性进行控制,有效地提高了设计灵活性。
  • 图  1  基于STFT算法的数字信道化处理功能框图

    图  2  IA-TFCE在不同PAR下的收敛情况

    图  3  IA-LPI在$\eta = {\text{0}}.{\text{1}}$时不同PAR下的收敛情况

    图  4  第300次迭代时IA-LPI在不同$\eta $与PAR的收敛对比

    图  5  随机编码, Golomb, CAN, PECAN与所提编码在$\eta = {\text{0}}.{\text{5}}$下的自相关对比

    图  6  IA-LPI在长度相同的不同PAR时随$\eta $变化的自相关性能对比

    图  7  随机编码, Golomb, CAN, PECAN与所提编码在不同接收门限下最大截获距离对比

    图  8  不同PAR时IA-LPI编码在接收灵敏度为–85 dBm下随着$\eta $变化的最大截获距离比较

    图  9  不同$\eta $时IA-LPI编码在接收门限为–85 dBm下随着PAR变化的最大截获距离比较

  • [1] SCHLEHER D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3–6. doi: 10.1109/MAES.2006.1635166.
    [2] SHAPERO S. Introduction to modern EW systems, 2nd edition (de Martino, A. ) [Book review][J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(8): 62–63. doi: 10.1109/MAES.2019.2921175.
    [3] WANG Yuanhang, ZHANG Tianxian, KONG Lingjiang, et al. A stochastic simulation optimization-based range gate pull-off jamming method[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 580–594. doi: 10.1109/TEVC.2022.3175517.
    [4] DING Xiaojin, SONG Tiecheng, ZOU Yulong, et al. Security-reliability tradeoff analysis of artificial noise aided two-way opportunistic relay selection[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 3930–3941. doi: 10.1109/TVT.2016.2601112.
    [5] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Power minimization-based robust OFDM Radar waveform design for Radar and communication systems in coexistence[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. doi: 10.1109/TSP.2017.2770086.
    [6] LAWRENCE D E. Low probability of intercept antenna array beamforming[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9): 2858–2865. doi: 10.1109/TAP.2010.2052573.
    [7] 巩朋成, 王兆彬, 谭海明, 等. 杂波背景下基于交替方向乘子法的低截获频控阵MIMO雷达收发联合优化方法[J]. 电子与信息学报, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.

    GONG Pengcheng, WANG Zhaobin, TAN Haiming, et al. Joint design of the transmit and receive beamforming via alternating direction method of multipliers for LPI of frequency diverse array MIMO Radar in the presence of clutter[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.
    [8] GLENN A. Low probability of intercept[J]. IEEE Communications Magazine, 1983, 21(4): 26–33. doi: 10.1109/MCOM.1983.1091402.
    [9] LIU Xinyu, ZHANG Tianxian, YU Xianxiang, et al. LPI waveform design for radar system against cyclostationary analysis intercept processing[J]. Signal Processing, 2022, 201: 108681. doi: 10.1016/j.sigpro.2022.108681.
    [10] GRIFFITHS H D. Detecting and classifying low probability of intercept radar – Second edition. P. E. Pace Artech House, 16 Sussex Street, London, SW1V 4RW, UK. 2009. 857pp. + diskette Illustrated. £100, ISBN 978-1-59693-234-0[J]. The Aeronautical Journal, 2011, 115(1168): 389. doi: 10.1017/S0001924000005960.
    [11] CHEN Jun, WANG Jie, ZHANG Yidong, et al. Spatial information-theoretic optimal LPI radar waveform design[J]. Entropy, 2022, 24(11): 1515. doi: 10.3390/e24111515.
    [12] CHEN Jun, WANG Fei, and ZHOU Jianjiang. Information-theoretic optimal radar waveform selection with multi-sensor cooperation for LPI purpose[J]. IEEE Access, 2022, 10: 113649–113661. doi: 10.1109/ACCESS.2022.3217554.
    [13] HIZAL A and DEMIR Ş. Pulsed FMCW waveform design for LPI radars based on stretch processing[C]. The 9th European Radar Conference, Amsterdam, Netherlands, 2012: 306–309.
    [14] GOVONI M A, LI Hongbin, and KOSINSKI J A. Low probability of interception of an advanced noise radar waveform with linear-FM[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1351–1356. doi: 10.1109/TAES.2013.6494419.
    [15] WAN Tao, JIANG Kaili, LIAO Jingyi, et al. Research on LPI radar signal detection and parameter estimation technology[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 566–572. doi: 10.23919/JSEE.2021.000048.
    [16] GODRICH H, PETROPULU A P, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226–3240. doi: 10.1109/TSP.2011.2144976.
    [17] SHI Yuxin, AN Kang, and LI Yusheng. Index modulation based frequency hopping: Anti-Jamming design and analysis[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6930–6942. doi: 10.1109/TVT.2021.3087640.
    [18] BURGOS-GARCIA M, SANMARTIN-JARA J, PEREZ-MARTINEZ F, et al. Radar sensor using low probability of interception SS-FH signals[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(4): 23–28. doi: 10.1109/62.839631.
    [19] PAN Qihe and NARAYANAN R M. Delay-modulated RF tag system concept using ultrawideband noise radar waveforms[J]. International Journal of Distributed Sensor Networks, 2011, 7(1): 156582. doi: 10.1155/2011/156582.
    [20] QIONGDAN Qiongdan, LI Yong, ZENG Yaoping, et al. Design and characteristic analysis of multicarrier chaotic phase coded radar pulse train signal[J]. International Journal of Antennas and Propagation, 2014, 2014: 724294. doi: 10.1155/2014/724294.
    [21] CHOI K and LIU Huaping. Quasi-synchronous CDMA using properly scrambled Walsh codes as user-spreading sequences[J]. IEEE Transactions on Vehicular Technology, 2010, 59(7): 3609–3617. doi: 10.1109/TVT.2010.2050916.
    [22] GROSS F B and CHEN K. Comparison of detectability of traditional pulsed and spread spectrum radar waveforms in classic passive receivers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 746–751. doi: 10.1109/TAES.2005.1468765.
    [23] LIU X, ZHANG T, SHI Q. LPI Radar Waveform Design With Desired Cyclic Spectrum and Pulse Compression Properties[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6789–6793. doi: 10.1109/TVT.2022.3233446.
    [24] SCHRICK G and WILEY R G. Interception of LPI radar signals[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 108–111. doi: 10.1109/RADAR.1990.201147.
    [25] LOU Mingyue, ZHONG Taineng, LI Min, et al. Low probability of intercept waveform optimization method for Sar imaging[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 3963–3966. doi: 10.1109/IGARSS47720.2021.9554227.
    [26] LIU Shuai, CAO Yunhe, YEO T S, et al. Range sidelobe suppression for randomized stepped-frequency chirp radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3874–3885. doi: 10.1109/TAES.2021.3082670.
    [27] LIU Shuai, CAO Yunhe, YEO T S, et al. Adaptive clutter suppression in randomized stepped-frequency radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1317–1333. doi: 10.1109/TAES.2020.3040530.
    [28] 朱勇刚, 张毅, 李玉生, 等. 一种时频码联合捷变波形及其反侦察性能[J]. 通信对抗, 2020, 39(1): 1–4,18.

    ZHU Yonggang, ZHANG Yi, LI Yusheng, et al. A joint time-frequency-code agile waveform and its anti-reconnaissance performance[J]. Communication Countermeasures, 2020, 39(1): 1–4,18.
    [29] WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402.
    [30] GONG Pengcheng, ZHANG Zhuoyu, WU Yuntao, et al. Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2022, 29: 1938–1942. doi: 10.1109/LSP.2022.3205206.
    [31] GONG Pengcheng, XU Kaiyan, WU Yuntao, et al. Optimization of LPI-FDA-MIMO radar and MIMO communication for spectrum coexistence[J]. IEEE Wireless Communications Letters, 2023, 12(6): 1076–1080. doi: 10.1109/LWC.2023.3261419.
    [32] JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on scaled ambiguity function[J]. Circuits, Systems, and Signal Processing, 2016, 35(12): 4445–4462. doi: 10.1007/s00034-016-0280-0.
    [33] HAMSCHIN B M, FERGUSON J D, and GRABBE M T. Interception of multiple low-power linear frequency modulated continuous wave signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 789–804. doi: 10.1109/TAES.2017.2665140.
    [34] ALPHONSE S and WILLIAMSON G A. On estimating nonlinear frequency modulated radar signals in low SNR environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1793–1802. doi: 10.1109/TAES.2021.3050649.
    [35] 符颖, 王星, 周一鹏, 等. 基于改进半监督朴素贝叶斯的LPI雷达信号识别[J]. 系统工程与电子技术, 2017, 39(11): 2463–2469. doi: 10.3969/j.issn.1001-506X.2017.11.11.

    FU Ying, WANG Xing, ZHOU Yipeng, et al. Recognition of LPI radar signals based on revised semi-supervised Naïve Bayes[J]. Systems Engineering and Electronics, 2017, 39(11): 2463–2469. doi: 10.3969/j.issn.1001-506X.2017.11.11.
    [36] WILLIAMS E C, BRIDGES C P, and BOWYER M D J. Nowhere to hide? Passive, non-cooperative maritime surveillance from a nanosat[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2018: 1–10. doi: 10.1109/AERO.2018.8396548.
    [37] ELLIS P, RHEEDEN D V, and DOWLA F. Use of Doppler and Doppler rate for RF geolocation using a single LEO satellite[J]. IEEE Access, 2020, 8: 12907–12920. doi: 10.1109/ACCESS.2020.2965931.
    [38] LEMIEUX J A and INGELS F M. Analysis of FSK/PSK modulated radar signals using Costas arrays and complementary Welti codes[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 589–594. doi: 10.1109/RADAR.1990.201115.
    [39] KIM I, PARK K H, SONG M K, et al. Design of LPI signals using optimal families of perfect polyphase sequences[C]. Proceedings of 2016 International Symposium on Information Theory and Its Applications (ISITA), Monterey, USA, 2016: 261–264.
    [40] WARNKE L, CORRELL B, and SWANSON C N. The density of Costas arrays decays exponentially[J]. IEEE Transactions on Information Theory, 2023, 69(1): 575–581. doi: 10.1109/TIT.2022.3202507.
    [41] 李正杰, 谢军伟, 张浩为, 等. 一种低截获背景下的集中式MIMO雷达快速功率分配算法[J]. 雷达学报, 2023, 12(3): 602–615. doi: 10.12000/JR22203.

    LI Zhengjie, XIE Junwei, ZHANG Haowei, et al. A fast power allocation algorithm in a collocated MIMO Radar under low interception backgrounds[J]. Journal of Radars, 2023, 12(3): 602–615. doi: 10.12000/JR22203.
    [42] 巩朋成, 吴云韬. 基于ADMM改进的低截获FDA-MIMO雷达发射波束设计[J]. 通信学报, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065.

    GONG Pengcheng and WU Yuntao. Improved transmit beamforming design based on ADMM for low probability of intercept of FDA-MIMO radar[J]. Journal on Communications, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065.
    [43] 王宏伟, 赵国庆, 王玉军, 等. 一种宽带数字信道化接收机[J]. 西安电子科技大学学报:自然科学版, 2010, 37(3): 487–491, 553. doi: 10.3969/j.issn.1001-2400.2010.03.018.

    WANG Hongwei, ZHAO Guoqing, WANG Yunjun, et al. Wideband digital channelized receiver design[J]. Journal of Xidian University, 2010, 37(3): 487–491, 553. doi: 10.3969/j.issn.1001-2400.2010.03.018.
    [44] 周一宇, 安玮, 郭福成, 等. 电子对抗原理与技术[M]. 北京: 电子工业出版社, 2014: 24–63.

    ZHOU Yiyu, AN Wei, GUO Fucheng, et al. Principles and Technologies of Electronic Warfare System[M]. Beijing: Publishing House of Electronics Industry, 2014: 24–63.
    [45] HUANG Xiangao, HUANG Wei, WANG Chao, et al. Blind reconnaissance of the pseudo-random sequence in DS/SS signal with negative SNR[J]. Science in China Series F:Information Sciences, 2007, 50(3): 510–520. doi: 10.1007/s11432-007-0039-0.
    [46] STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562.
    [47] STOICA P, HE Hao, and LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8): 703–706. doi: 10.1109/LSP.2009.2021378.
    [48] JOSE S and VIJAYALAKSHMI C. Design and analysis of multi-objective optimization problem using evolutionary algorithms[J]. Procedia Computer Science, 2020, 172: 896–899. doi: 10.1016/j.procs.2020.05.129.
    [49] TROPP J A, DHILLON I S, HEATH R W, et al. Designing structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory, 2005, 51(1): 188–209. doi: 10.1109/TIT.2004.839492.
    [50] GOLAY M. A class of finite binary sequences with alternate auto-correlation values equal to zero (Corresp. )[J]. IEEE Transactions on Information Theory, 1972, 18(3): 449–450. doi: 10.1109/TIT.1972.1054797.
    [51] ZHANG N and GOLOMB S W. Polyphase sequence with low autocorrelations[J]. IEEE Transactions on Information Theory, 1993, 39(3): 1085–1089. doi: 10.1109/18.256535.
    [52] HE H. Waveform design for active sensing systems — a computational approach[D]. [Ph. D. dissertation], University of Florida, 2011.
  • 加载中
图(9)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  78
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-02-07
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回