高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低相关区互补序列集的构造方法研究

刘涛 王玉含 李玉博

刘涛, 王玉含, 李玉博. 低相关区互补序列集的构造方法研究[J]. 电子与信息学报, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332
引用本文: 刘涛, 王玉含, 李玉博. 低相关区互补序列集的构造方法研究[J]. 电子与信息学报, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332
LIU Tao, WANG Yuhan, LI Yubo. Research on Construction Methods of Low Correlation zone Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332
Citation: LIU Tao, WANG Yuhan, LI Yubo. Research on Construction Methods of Low Correlation zone Complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3410-3418. doi: 10.11999/JEIT231332

低相关区互补序列集的构造方法研究

doi: 10.11999/JEIT231332 cstr: 32379.14.JEIT231332
基金项目: 国家自然科学基金(62241110),河北省高等学校科学技术研究基金(ZD2021105),河北省重点实验室基金(202250701010046)
详细信息
    作者简介:

    刘涛:女,讲师,研究方向为序列设计与编码理论

    王玉含:男,硕士生,研究方向为序列设计与编码理论

    李玉博:男,教授,研究方向为序列设计与编码、大规模多址接入和通感一体化信号设计

    通讯作者:

    李玉博 liyubo6316@ysu.edu.cn

  • 中图分类号: TN911.2

Research on Construction Methods of Low Correlation zone Complementary Sequence Sets

Funds: The National Natural Science Foundation of China (62241110), The Science and Technology Project of Hebei Education Department (ZD2021105), Hebei Province Key Laboratory Project (202250701010046)
  • 摘要: 完备互补序列是一类具有理想相关函数性质的信号,在多址接入通信系统、雷达波形设计等领域具有广泛的应用。然而完备互补序列集合大小不超过其子序列数目。为扩展互补序列数目,该文研究了非周期低相关区互补序列集的构造方法,首先提出了两类有限域上的映射函数,进而得到两类参数渐近达到最优的低相关区互补序列集。该类低相关区互补序列集相比完备互补序列集具有更多的序列数目,在通信系统中可支持更多的用户。
  • 图  1  非周期相关函数幅值

    图  2  非周期相关函数幅值

    表  1  例1中集合$ {\boldsymbol{C}} $的部分互补序列

    $ {{\boldsymbol{C}}^{(0,0,0)}} $ $ {{\boldsymbol{C}}^{(0,0,1)}} $ $ {{\boldsymbol{C}}^{(0,1,0)}} $ $ {{\boldsymbol{C}}^{(0,1,1)}} $
    $ \begin{gathered} \omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^7\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{49}\omega _{56}^{35} \\ \omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^{42}\omega _{56}^{14} \\ \omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^7\omega _{56}^{14}\omega _{56}^{35}\omega _{56}^{49} \\ \omega _{56}^{28}\omega _{56}^0\omega _{56}^0\omega _{56}^{28}\omega _{56}^0\omega _{56}^{28}\omega _{56}^{28} \\ \omega _{56}^{35}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{21}\omega _{56}^7 \\ \omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^{14}\omega _{56}^{42} \\ \omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^{35}\omega _{56}^{14}\omega _{56}^7\omega _{56}^{21} \\ \end{gathered} $ $ \begin{gathered} \omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{49}\omega _{56}^{35}\omega _{56}^7\omega _{56}^{14}\omega _{56}^{28} \\ \omega _{56}^{42}\omega _{56}^{28}\omega _{56}^{42}\omega _{56}^{14}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0 \\ \omega _{56}^7\omega _{56}^{14}\omega _{56}^{35}\omega _{56}^{49}\omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{28} \\ \omega _{56}^{28}\omega _{56}^0\omega _{56}^{28}\omega _{56}^{28}\omega _{56}^{28}\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{21}\omega _{56}^7\omega _{56}^{35}\omega _{56}^{14}\omega _{56}^{28} \\ \omega _{56}^{14}\omega _{56}^{28}\omega _{56}^{14}\omega _{56}^{42}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0 \\ \omega _{56}^{35}\omega _{56}^{14}\omega _{56}^7\omega _{56}^{21}\omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{28} \\ \end{gathered} $ $ \begin{gathered} \omega _{56}^0\omega _{56}^8\omega _{56}^{16}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^7\omega _{56}^{22}\omega _{56}^{44}\omega _{56}^{45}\omega _{56}^{18}\omega _{56}^{33}\omega _{56}^{27} \\ \omega _{56}^{14}\omega _{56}^{36}\omega _{56}^{16}\omega _{56}^{10}\omega _{56}^4\omega _{56}^{26}\omega _{56}^6 \\ \omega _{56}^{21}\omega _{56}^{50}\omega _{56}^{44}\omega _{56}^{31}\omega _{56}^{46}\omega _{56}^{19}\omega _{56}^{41} \\ \omega _{56}^{28}\omega _{56}^8\omega _{56}^{16}\omega _{56}^{52}\omega _{56}^{32}\omega _{56}^{12}\omega _{56}^{20} \\ \omega _{56}^{35}\omega _{56}^{22}\omega _{56}^{44}\omega _{56}^{17}\omega _{56}^{18}\omega _{56}^5\omega _{56}^{55} \\ \omega _{56}^{42}\omega _{56}^{36}\omega _{56}^{16}\omega _{56}^{38}\omega _{56}^4\omega _{56}^{54}\omega _{56}^{34} \\ \omega _{56}^{49}\omega _{56}^{50}\omega _{56}^{44}\omega _{56}^3\omega _{56}^{46}\omega _{56}^{47}\omega _{56}^{13} \\ \end{gathered} $ $ \begin{gathered} \omega _{56}^0\omega _{56}^8\omega _{56}^{16}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^{21}\omega _{56}^{50}\omega _{56}^9\omega _{56}^3\omega _{56}^{39}\omega _{56}^{54}\omega _{56}^{20} \\ \omega _{56}^{42}\omega _{56}^{36}\omega _{56}^2\omega _{56}^{38}\omega _{56}^{46}\omega _{56}^{12}\omega _{56}^{48} \\ \omega _{56}^7\omega _{56}^{22}\omega _{56}^{51}\omega _{56}^{17}\omega _{56}^{53}\omega _{56}^{26}\omega _{56}^{20} \\ \omega _{56}^{28}\omega _{56}^8\omega _{56}^{44}\omega _{56}^{52}\omega _{56}^4\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^{49}\omega _{56}^{50}\omega _{56}^{37}\omega _{56}^{31}\omega _{56}^{11}\omega _{56}^{54}\omega _{56}^{20} \\ \omega _{56}^{14}\omega _{56}^{36}\omega _{56}^{30}\omega _{56}^{10}\omega _{56}^{18}\omega _{56}^{12}\omega _{56}^{48} \\ \omega _{56}^{35}\omega _{56}^{22}\omega _{56}^{23}\omega _{56}^{45}\omega _{56}^{25}\omega _{56}^{26}\omega _{56}^{20} \\ \end{gathered} $
    $ {{\boldsymbol{C}}^{(1,0,0)}} $ $ {{\boldsymbol{C}}^{(1,0,1)}} $ $ {{\boldsymbol{C}}^{(1,1,0)}} $ $ {{\boldsymbol{C}}^{(1,1,1)}} $
    $ \begin{gathered} \omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^0\omega _{56}^{21}\omega _{56}^{35}\omega _{56}^{14}\omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{28} \\ \omega _{56}^0\omega _{56}^{42}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0 \\ \omega _{56}^0\omega _{56}^7\omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{35}\omega _{56}^{14}\omega _{56}^{28} \\ \omega _{56}^0\omega _{56}^{28}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{28}\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^0\omega _{56}^{49}\omega _{56}^7\omega _{56}^{14}\omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{28} \\ \omega _{56}^0\omega _{56}^{14}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0 \\ \omega _{56}^0\omega _{56}^{35}\omega _{56}^{21}\omega _{56}^{42}\omega _{56}^7\omega _{56}^{14}\omega _{56}^{28} \\ \end{gathered} $ $\begin{gathered} \omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^0 \\ \omega _{56}^{14}\omega _{56}^{49}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{21}\omega _{56}^{35} \\ \omega _{56}^{28}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0\omega _{56}^0\omega _{56}^{42}\omega _{56}^{14} \\ \omega _{56}^{42}\omega _{56}^{35}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0\omega _{56}^7\omega _{56}^{49} \\ \omega _{56}^0\omega _{56}^{28}\omega _{56}^0\omega _{56}^0\omega _{56}^0\omega _{56}^{28}\omega _{56}^{28} \\ \omega _{56}^{14}\omega _{56}^{21}\omega _{56}^{42}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{49}\omega _{56}^7 \\ \omega _{56}^{28}\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0\omega _{56}^0\omega _{56}^{14}\omega _{56}^{42} \\ \omega _{56}^{42}\omega _{56}^7\omega _{56}^{14}\omega _{56}^{28}\omega _{56}^0\omega _{56}^{35}\omega _{56}^{21} \\ \end{gathered} $ $\begin{gathered} \omega _{56}^0\omega _{56}^8\omega _{56}^{16}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^0\omega _{56}^{29}\omega _{56}^{51}\omega _{56}^{38}\omega _{56}^{25}\omega _{56}^{26}\omega _{56}^{20} \\ \omega _{56}^0\omega _{56}^{50}\omega _{56}^{30}\omega _{56}^{52}\omega _{56}^{18}\omega _{56}^{12}\omega _{56}^{48} \\ \omega _{56}^0\omega _{56}^{15}\omega _{56}^9\omega _{56}^{10}\omega _{56}^{11}\omega _{56}^{54}\omega _{56}^{20} \\ \omega _{56}^0\omega _{56}^{36}\omega _{56}^{44}\omega _{56}^{24}\omega _{56}^4\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^0\omega _{56}^1\omega _{56}^{23}\omega _{56}^{38}\omega _{56}^{53}\omega _{56}^{26}\omega _{56}^{20} \\ \omega _{56}^0\omega _{56}^{22}\omega _{56}^2\omega _{56}^{52}\omega _{56}^{46}\omega _{56}^{12}\omega _{56}^{48} \\ \omega _{56}^0\omega _{56}^{43}\omega _{56}^{37}\omega _{56}^{10}\omega _{56}^{39}\omega _{56}^{54}\omega _{56}^{20} \\ \end{gathered} $ $ \begin{gathered} \omega _{56}^0\omega _{56}^8\omega _{56}^{16}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{40}\omega _{56}^{48} \\ \omega _{56}^{14}\omega _{56}^1\omega _{56}^2\omega _{56}^{52}\omega _{56}^{32}\omega _{56}^5\omega _{56}^{27} \\ \omega _{56}^{28}\omega _{56}^{50}\omega _{56}^{44}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{26}\omega _{56}^6 \\ \omega _{56}^{42}\omega _{56}^{43}\omega _{56}^{30}\omega _{56}^{52}\omega _{56}^{32}\omega _{56}^{47}\omega _{56}^{41} \\ \omega _{56}^0\omega _{56}^{36}\omega _{56}^{16}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{12}\omega _{56}^{20} \\ \omega _{56}^{14}\omega _{56}^{29}\omega _{56}^2\omega _{56}^{52}\omega _{56}^{32}\omega _{56}^{33}\omega _{56}^{55} \\ \omega _{56}^{28}\omega _{56}^{22}\omega _{56}^{44}\omega _{56}^{24}\omega _{56}^{32}\omega _{56}^{54}\omega _{56}^{34} \\ \omega _{56}^{42}\omega _{56}^{15}\omega _{56}^{30}\omega _{56}^{52}\omega _{56}^{32}\omega _{56}^{19}\omega _{56}^{13} \\ \end{gathered} $
    下载: 导出CSV

    表  2  渐近最优LCZ-CSS参数

    $ p $,$ n $,$ q $$ K $$ M $$ N $$ Z $$ {\rho _{{\text{LCZ}}}} $
    $ p = 2,n = 3,q = 8 $1128731.3655
    $ p = 3,n = 2,q = 9 $1449831.3312
    $ p = 2,n = 4,q = 16 $1200161531.1434
    $ p = 5,n = 2,q = 25 $4800252431.0871
    $ p = 7,n = 2,q = 49 $15872323131.0426
    下载: 导出CSV

    表  3  例2中集合$ {\boldsymbol{C}} $的部分互补序列

    $ {{\boldsymbol{C}}^{(0,0,0)}} $ $ {{\boldsymbol{C}}^{(0,0,1)}} $ $ {{\boldsymbol{C}}^{(0,1,0)}} $ $ {{\boldsymbol{C}}^{(0,1,1)}} $ $ {{\boldsymbol{C}}^{(0,2,0)}} $ $ {{\boldsymbol{C}}^{(0,2,1)}} $ $ {{\boldsymbol{C}}^{(1,0,0)}} $ $ {{\boldsymbol{C}}^{(1,0,1)}} $ $ {{\boldsymbol{C}}^{(1,1,0)}} $ $ {{\boldsymbol{C}}^{(1,1,1)}} $
    $ \begin{gathered} \begin{array}{*{20}{l}} {132645} \\ {264513} \\ {326451} \\ {451326} \\ {513264} \\ {645132} \\ 000000 \end{array} \end{gathered} $ $ \begin{array}{*{20}{l}} {645132} \\ {513264} \\ {451326} \\ {326451} \\ {264513} \\ {132645} \\ {000000} \end{array} $ $ \begin{array}{*{20}{l}} {326451} \\ {451326} \\ {513264} \\ {645132} \\ {000000} \\ {132645} \\ {264513} \end{array} $ $ \begin{array}{*{20}{l}} {451326} \\ {326451} \\ {264513} \\ {132645} \\ {000000} \\ {645132} \\ {513264} \end{array} $ $ \begin{gathered} \begin{array}{*{20}{l}} {264513} \\ {326451} \\ {451326} \\ {513264} \\ {645132} \\ {000000} \\ 132645 \end{array} \end{gathered} $ $ \begin{array}{*{20}{l}} {513264} \\ {451326} \\ {326451} \\ {264513} \\ {132645} \\ {000000} \\ {645132} \end{array} $ $ \begin{array}{*{20}{l}} {132645} \\ {305624} \\ {541603} \\ {014652} \\ {250631} \\ {423610} \\ {666666} \end{array} $ $ \begin{array}{*{20}{l}} {645132} \\ {624305} \\ {603541} \\ {652014} \\ {631250} \\ {610423} \\ {666666} \end{array} $ $ \begin{gathered} \begin{array}{*{20}{l}} {326451} \\ {562430} \\ {035416} \\ {201465} \\ {444444} \\ {610423}\\153402 \end{array} \end{gathered} $ $ \begin{array}{*{20}{l}} {451326} \\ {430562} \\ {416035} \\ {465201} \\ {444444} \\ {423610} \\ {402153} \end{array} $
    下载: 导出CSV

    表  4  渐近最优非周期QCSS参数比较

    文献$ K $$ M $$ N $$Z$$ {\delta _{\max }} $字符集大小约束条件
    文献[10]定理4$ N{q_1}{q_2} $,其中
    $ N = {\text{lcm}}({q_1} - 1,{q_2} - 1) $
    $ {q_1}{q_2} $$ {\text{lcm}}({q_1} - 1,{q_2} - 1) $$ {q_1} - 1 $$ {q_1}{q_2} $$ {\text{lcm}}(N,{q_1}{q_2}) $$ {q_1} $,$ {q_2} $为素数幂$ 3 \le {q_1} < {q_2} $
    文献[19]$ {2^n}({2^n} - 1)\left\lfloor {{{({2^n} - 1)} \mathord{\left/ {\vphantom {{({2^n} - 1)} Z}} \right. } Z}} \right\rfloor $$ {2^n} $$ {2^n} - 1 $$ 0 < Z \le {2^n} - 1 $$ {2^n} $2$ n \ge 3 $
    文献[20]$N \times F(N)$$N$$N$$N$$N$$N$$N \ge 2$为任意整数
    文献[21]${p^{n + 1}}(p - 1)$${p^{n + 1}}$${p^m}$${p^m}$${p^m}$$q$$n \le m - 1$是任意非负整数,$p|q$
    本文定理1$ q(q - 1)\left\lfloor {{{(q - 1)} \mathord{\left/ {\vphantom {{(q - 1)} Z}} \right. } Z}} \right\rfloor $$ q $$ q - 1 $$0 < Z \le q - 1$$ q $$ q(q - 1) $$ q \ge 3 $是素数幂
    本文定理2$ {q^2}\left\lfloor {{{(q - 1)} \mathord{\left/ {\vphantom {{(q - 1)} Z}} \right. } Z}} \right\rfloor $$ q $$ q - 1 $$0 < Z \le q - 1$$ q $$ q $
    :${\text{lcm}}$表示最大公约数,$F(N)$是$F(N) \times N$佛罗伦萨矩阵存在的最大行数,$p$是素数。
    下载: 导出CSV
  • [1] CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124.
    [2] ABEBE A T and KANG C G. Multiple codebook-based non-orthogonal multiple access[J]. IEEE Wireless Communications Letters, 2020, 9(5): 683–687. doi: 10.1109/LWC.2020.2965939.
    [3] CHEN Y M and CHEN Jianwei. On the design of near-optimal sparse code multiple access codebooks[J]. IEEE Transactions on Communications, 2020, 68(5): 2950–2962. doi: 10.1109/TCOMM.2020.2974213.
    [4] LI Fengjie, JIANG Yi, DU Cheng, et al. Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 2100–2113. doi: 10.1109/TSP.2021.3067467.
    [5] SU Dongliang, JIANG Yi, WANG Xin, et al. Omnidirectional precoding for massive MIMO with uniform rectangular array—Part I: Complementary codes-based schemes[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4761–4771. doi: 10.1109/TSP.2019.2931205.
    [6] CHEN Xu, FENG Zhiyong, WEI Zhiqing, et al. Code-division OFDM joint communication and sensing system for 6G machine-type communication[J]. IEEE Internet of Things Journal, 2021, 8(15): 12093–12105. doi: 10.1109/JIOT.2021.3060858.
    [7] SHARMA S and KOIVUNEN V. Multicarrier DS-CDMA based integrated sensing and communication waveform designs[C]. MILCOM 2022–2022 IEEE Military Communications Conference (MILCOM), Rockville, USA, 2022: 95–101. doi: 10.1109/MILCOM55135.2022.10017835.
    [8] 陈晓玉, 彭秀英, 王成瑞, 等. 周期准互补序列集构造法[J]. 电子与信息学报, 2022, 44(11): 4034–4040. doi: 10.11999/JEIT210881.

    CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, et al. Constructions of periodic quasi-complementary sequence sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034–4040. doi: 10.11999/JEIT210881.
    [9] 陈晓玉, 王成瑞, 刘凡. 新的周期准互补序列集构造方法[J]. 通信学报, 2023, 44(5): 206–212. doi: 10.11959/j.issn.1000-436x.2023100.

    CHEN Xiaoyu, WANG Chengrui, and LIU Fan. New construction method of periodic quasi-complementary sequence set[J]. Journal on Communications, 2023, 44(5): 206–212. doi: 10.11959/j.issn.1000-436x.2023100.
    [10] LI Yubo, TIAN Liying, and XU Chengqian. Constructions of asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2019, 67(11): 7499–7511. doi: 10.1109/TCOMM.2019.2933517.
    [11] DAS S, PARAMPALLI U, MAJHI S, et al. New optimal Z-complementary code sets based on generalized paraunitary matrices[J]. IEEE Transactions on Signal Processing, 2020, 68: 5546–5558. doi: 10.1109/TSP.2020.3021977.
    [12] SARKAR P, MAJHI S, and LIU Zilong. Pseudo-Boolean functions for optimal Z-complementary code sets with flexible lengths[J]. IEEE Signal Processing Letters, 2021, 28: 1350–1354. doi: 10.1109/LSP.2021.3091886.
    [13] WU S W, ŞAHIN A, HUANG Zhenming, et al. Z-complementary code sets with flexible lengths from generalized boolean functions[J]. IEEE Access, 2021, 9: 4642–4652. doi: 10.1109/ACCESS.2020.3047955.
    [14] LI Yu, YAN Tongjiang, and LV Chuan. Construction of a near-optimal quasi-complementary sequence set from almost difference set[J]. Cryptography and Communications, 2019, 11(4): 815–824. doi: 10.1007/s12095-018-0330-5.
    [15] LUO Gaojun, CAO Xiwang, SHI Minjia, et al. Three new constructions of asymptotically optimal periodic quasi-complementary sequence sets with small alphabet sizes[J]. IEEE Transactions on Information Theory, 2021, 67(8): 5168–5177. doi: 10.1109/TIT.2021.3068474.
    [16] LIU Tao, XU Chengqian, and LI Yubo. Multiple complementary sequence sets with low inter-set cross-correlation property[J]. IEEE Signal Processing Letters, 2019, 26(6): 913–917. doi: 10.1109/LSP.2019.2902752.
    [17] ZHOU Zhengchun, LIU Fangrui, ADHIKARY A R, et al. A generalized construction of multiple complete complementary codes and asymptotically optimal aperiodic quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2020, 68(6): 3564–3571. doi: 10.1109/TCOMM.2020.2978182.
    [18] LIU Zilong, GUAN Yongliang, NG B C, et al. Correlation and set size bounds of complementary sequences with low correlation zone[J]. IEEE Transactions on Communications, 2011, 59(12): 3285–3289. doi: 10.1109/TCOMM.2011.071111.100608.
    [19] LIU Tao, XU Chengqian, and LI Yubo. Binary complementary sequence set with low correlation zone[J]. IEEE Signal Processing Letters, 2020, 27: 1550–1554. doi: 10.1109/LSP.2020.3018628.
    [20] ADHIKARY A R, FENG Yanghe, ZHOU Zhengchun, et al. Asymptotically optimal and near-optimal aperiodic quasi-complementary sequence sets based on Florentine rectangles[J]. IEEE Transactions on Communications, 2022, 70(3): 1475–1485. doi: 10.1109/TCOMM.2021.3132364.
    [21] SARKAR P, LI Chunlei, MAJHI S, et al. New correlation bound and construction of quasi-complementary sequence sets[J]. IEEE Transactions on Information Theory, 2024, 70(3): 2201–2223. doi: 10.1109/TIT.2024.3352895.
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  102
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-04-11
  • 网络出版日期:  2024-05-13
  • 刊出日期:  2024-08-10

目录

    /

    返回文章
    返回