高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能表面辅助的V2I通信系统联合波束赋形算法

仲伟志 何艺 段洪涛 万诗晴 范振雄 朱秋明 林志鹏

仲伟志, 何艺, 段洪涛, 万诗晴, 范振雄, 朱秋明, 林志鹏. 可重构智能表面辅助的V2I通信系统联合波束赋形算法[J]. 电子与信息学报, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
引用本文: 仲伟志, 何艺, 段洪涛, 万诗晴, 范振雄, 朱秋明, 林志鹏. 可重构智能表面辅助的V2I通信系统联合波束赋形算法[J]. 电子与信息学报, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
ZHONG Weizhi, HE Yi, DUAN Hongtao, WAN Shiqing, FAN Zhenxiong, ZHU Qiuming, LIN Zhipeng. Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324
Citation: ZHONG Weizhi, HE Yi, DUAN Hongtao, WAN Shiqing, FAN Zhenxiong, ZHU Qiuming, LIN Zhipeng. Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117-3125. doi: 10.11999/JEIT231324

可重构智能表面辅助的V2I通信系统联合波束赋形算法

doi: 10.11999/JEIT231324 cstr: 32379.14.JEIT231324
基金项目: 江苏省重点研发计划(产业前瞻与关键核心技术)(BE2022067, BE2022067-1, BE2022067-3),国家自然科学基金(62271250),南京航空航天大学研究生科研与实践创新计划(xcxjh20231507)
详细信息
    作者简介:

    仲伟志:女,副教授,研究方向为5G中的毫米波通信、波束成形、波束跟踪技术和无人机轨迹规划

    何艺:女,硕士生,研究方向为车载毫米波通信,可重构智能表面联合波束赋形

    段洪涛:男,正高级工程师,研究方向为无人机通信与反制,频谱管理,短波及超短波监测等

    万诗晴:女,硕士生,研究方向为无人机通信,可重构智能表面联合波束赋形

    范振雄:男,高级工程师,研究方向为无人机通信与反制,超短波干扰定位及查找,短波测向等

    朱秋明:男,教授,研究方向为电磁信号传播机理、无线信道测量建模应用、电磁频谱语义孪生以及通信装备智能化测试等

    林志鹏:男,副研究员,研究方向为高维信道参数估计、大规模阵列信号处理、无人机通信、频谱信号感知及重构等

    通讯作者:

    仲伟志 zhongwz@nuaa.edu.cn

  • 中图分类号: TN929.5

Joint Beamforming Algorithm for Reconfigurable Intelligent Surface-aided V2I Communication System

Funds: The Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry) (BE2022067, BE2022067-1, BE2022067-3), The National Natural Science Foundation of China (62271250), The Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics (xcxjh20231507)
  • 摘要: 为解决基于信道先验知识的联合波束赋形方法受限于多变的车辆与交通基础设施(V2I)通信场景且信道估计开销过大等问题,该文结合环境态势感知,提出一种基于无线传播链路预测的联合波束赋形方法。该方法首先利用射线追踪模拟器构建了可重构智能表面(RIS)辅助的V2I毫米波通信系统模型,通过改变环境态势以获取多样的无线传播链路数据来构建数据集。其次,使用该数据集训练基于机器学习的无线传播链路预测模型。最后,在最大发射功率约束条件下,构建了联合波束赋形问题模型,并基于预测结果采用交替迭代优化方法(AIOA)优化基站波束赋形矩阵和RIS相移矩阵,以实现同步通信车辆用户最小信干噪比(SINR)的最大化。仿真结果验证了该方法的有效性,通过引入非信道先验知识驱动,降低了信道探测开销,提高了该方法在V2I场景中的可行性。
  • 图  1  RIS辅助的V2I多用户毫米波通信系统示意图

    图  2  环境态势感知的实现方法示意图

    图  3  坐标系示意图

    图  4  场景模型以及无线传播链路可视化结果

    图  5  基于无线传播链路预测的联合波束赋形方法流程图

    图  6  交替迭代优化算法流程图

    图  7  不同迭代停止精度$ {\beta _2} $下的AIOA性能比较

    图  8  不同维度RIS的AIOA性能比较

    图  9  基于不同编码方式预测结果的AIOA性能比较

    图  10  不同联合波束赋形方法的$ {\text{E}}[\min ({\text{SIN}}{{\text{R}}_k})] $性能比较

    图  11  基于真实信道和预测信道的AIOA总频带利用率比较

    图  12  定位误差的影响

    图  13  不同车辆用户数对联合波束赋形性能的影响

    1  二分搜索算法

     初始化参数:$ {\beta _1} $, $ P $, $ \delta $, $ {\boldsymbol{\varTheta}} $,$ {\lambda _{\text{u}}} $, $ {\lambda _{\text{l}}} = 0 $
     (1) While $ ({\lambda _{\text{u}}} - {\lambda _{\text{l}}}) \ge {\beta _1} $ do
     (2)  $ t = ({\lambda _{\text{u}}}{\text{ + }}{\lambda _{\text{l}}})/2 $
     (3)  利用半定松弛方法解决问题(P2a)
     (4)  if 当前的$ t $和$ {\boldsymbol{\varTheta}} $可以使得问题(P2a)状态为可行 then
     (5)   $ {\lambda _{\text{u}}} = \delta t,{\text{ }}{\lambda _{\text{l}}} = t $
     (6)  else
     (7)   $ {\lambda _{\text{u}}} = t $
     (8)  end if
     (9) end while
     输出$ t;{\text{ }}{\boldsymbol{X}}_k^{{\text{opt}}},\forall k = \{ 1,2, \cdots ,K\} $
    下载: 导出CSV

    表  1  通用仿真参数

    参数 参数
    M 9 单车道尺寸/(长, 宽)(m) (100, 5)
    N {16, 36} BS坐标/(水平位置, 高度)(m) (50, 3)
    L 2 RIS坐标/(水平位置, 高度)(m) (50, 8)
    K 2 小型车辆尺寸/(长, 宽, 高)(m) (4, 2, 1.5)
    $ \sigma _k^2 $(dB) –110 大型车辆尺寸/(长, 宽, 高)(m) (9, 2.5, 2.5)
    $ \kappa $(dB) 4 信号中心频率(GHz) 28
    下载: 导出CSV

    表  2  不同编码方式对应的环境态势特征下预测模型在测试集上的MSE

    T1,1 T2,1 T3,1 T4,1 T5,1 T1,2 T2,2 T3,2 T4,2 T5,2
    TVOM 3.07E–07 4.50E–07 2.82E–04 1.71E–02 1.44E–06 7.07E–04 1.24E–03 5.75E–03 2.18E–02 3.25E–03
    NOCM 1.86E–07 1.96E–07 9.45E–07 3.96E–05 1.21E–06 3.66E–04 8.60E–04 2.73E–04 4.62E–04 1.55E–03
    OLCM,Nv=2 1.22E–07 8.66E–09 7.14E–08 4.04E–07 3.92E–07 2.66E–04 7.75E–04 4.59E–04 5.11E–05 2.13E–03
    下载: 导出CSV
  • [1] CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015.
    [2] WANG Jiadai, LIU Jiajia, and KATO N. Networking and communications in autonomous driving: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1243–1274. doi: 10.1109/COMST.2018.2888904.
    [3] ZHU Yishi, MAO Bomin, and KATO N. Intelligent reflecting surface in 6G vehicular communications: A survey[J]. IEEE Open Journal of Vehicular Technology, 2022, 3: 266–277. doi: 10.1109/OJVT.2022.3177253.
    [4] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [5] LI Lianlin, RUAN Hengxin, LIU Che, et al. Machine-learning reprogrammable metasurface imager[J]. Nature Communications, 2019, 10(1): 1082. doi: 10.1038/s41467-019-09103-2.
    [6] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [7] KONG Xiangping, WANG Yu, ZHANG Lei, et al. Active and passive beamforming for IRS-aided vehicle communication[J]. KSII Transactions on Internet and Information Systems, 2023, 17(5): 1503–1515. doi: 10.3837/TIIS.2023.05.011.
    [8] ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814.
    [9] OMID Y, SHAHABI S M, PAN C H, et al. Low-complexity robust beamforming design for IRS-aided MISO systems with imperfect channels[J]. IEEE Communications Letters, 2021, 25(5): 1697–1701. doi: 10.1109/LCOMM.2021.3049685.
    [10] WANG Jintao, GONG Shiqi, WU Qingqing, et al. RIS-aided MIMO systems with hardware impairments: Robust beamforming design and analysis[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6914–6929. doi: 10.1109/TWC.2023.3246990.
    [11] CHEN Yuanbin, WANG Ying, and JIAO Lei. Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 928–944. doi: 10.1109/TWC.2021.3100492.
    [12] ALSENWI M, ABOLHASAN M, and LIPMAN J. Intelligent and reliable millimeter wave communications for RIS-aided vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21582–21592. doi: 10.1109/TITS.2022.3190101.
    [13] TAHA A, ALRABEIAH M, and ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning[J]. IEEE Access, 2021, 9: 44304–44321. doi: 10.1109/ACCESS.2021.3064073.
    [14] LIN Tian, YU Xianghao, ZHU Yu, et al. Channel estimation for IRS-assisted millimeter-wave MIMO systems: Sparsity-inspired approaches[J]. IEEE Transactions on Communications, 2022, 70(6): 4078–4092. doi: 10.1109/TCOMM.2022.3168876.
    [15] PARK J J, LEE J, LIANG Jinyi, et al. Millimeter wave vehicular blockage characteristics based on 28 GHz measurements[C]. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFALL.2017.8287892.
    [16] WANG Yuyang, KLAUTAU A, RIBERO M, et al. MmWave vehicular beam selection with situational awareness using machine learning[J]. IEEE Access, 2019, 7: 87479–87493. doi: 10.1109/ACCESS.2019.2922064.
    [17] 朱秋明, 华博宇, 毛开, 等. 无人机毫米波信道建模进展和挑战[J]. 数据采集与处理, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004.

    ZHU Qiuming, HUA Boyu, MAO Kai, et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020, 35(6): 1049–1059. doi: 10.16337/J.1004-9037.2020.06.004.
    [18] 朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/J.ISSN.1006-1010.20221114-0001.
    [19] KARIPIDIS E, SIDIROPOULOS N D, and LUO Zhiquan. Quality of service and max-Min fair transmit beamforming to multiple cochannel multicast groups[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1268–1279. doi: 10.1109/TSP.2007.909010.
    [20] SIDIROPOULOS N D, DAVIDSON T N, and LUO Zhiquan. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239–2251. doi: 10.1109/TSP.2006.872578.
    [21] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  133
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-06-13
  • 网络出版日期:  2024-06-21
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回