高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用新兴隧穿器件的低功耗微控制器设计与实现

蔡浩 童辛芳 杨军

蔡浩, 童辛芳, 杨军. 采用新兴隧穿器件的低功耗微控制器设计与实现[J]. 电子与信息学报, 2024, 46(5): 2264-2273. doi: 10.11999/JEIT231298
引用本文: 蔡浩, 童辛芳, 杨军. 采用新兴隧穿器件的低功耗微控制器设计与实现[J]. 电子与信息学报, 2024, 46(5): 2264-2273. doi: 10.11999/JEIT231298
CAI Hao, TONG Xinfang, YANG Jun. Low-power Microcontroller Units Design and Realization Using Emerging Tunneling Field Effect Transistors[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2264-2273. doi: 10.11999/JEIT231298
Citation: CAI Hao, TONG Xinfang, YANG Jun. Low-power Microcontroller Units Design and Realization Using Emerging Tunneling Field Effect Transistors[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2264-2273. doi: 10.11999/JEIT231298

采用新兴隧穿器件的低功耗微控制器设计与实现

doi: 10.11999/JEIT231298
基金项目: 国家重点研发计划 (2018YFB2202800)
详细信息
    作者简介:

    蔡浩:男,副教授,研究方向为自旋磁存储器芯片设计

    童辛芳:女,硕士生,研究方向为微控制单元与新型存储器联合设计

    杨军:男,教授,研究方向为低功耗高能效芯片设计与EDA

    通讯作者:

    蔡浩 hao.cai@seu.edu.cn

  • 中图分类号: TN386

Low-power Microcontroller Units Design and Realization Using Emerging Tunneling Field Effect Transistors

Funds: The National Key Research and Development Program of China (2018YFB2202800)
  • 摘要: 基于隧穿场效应晶体管(TFET)器件的低功耗微控制器设计将器件、电路和系统结合,利用具有超低亚阈值摆幅特性的器件使得电路在非工作情况下达到极低泄露功耗,避免了金属氧化物半导体场效应晶体管(MOSFET)器件亚阈值摆幅理论极限带来的功耗瓶颈,解决了目前对电池供电设备中微控制器的低功耗需求问题。TFET器件与传统MOSFET器件在工作机理上差异较大,主要体现在关断后具有更低的泄露电流,可以在更低的电压下工作,适用于长休眠电池供电低功耗需求下的物联网应用场景设计。该文调研了近年来TFET器件在低功耗电路设计方面的研究,介绍了传统微控制器的结构以及功耗来源,同时阐述了TFET器件的工作原理、特性以及设计挑战,在数字电路、模拟电路以及系统设计各领域考察了TFET器件的研究发展进程,并对各设计方案进行了优劣势分析,结合文献调研分析了TFET器件在低功耗微控制器设计领域的未来展望。
  • 图  1  MCU架构

    图  2  物联网设备周期工作示意图

    图  3  静态功耗产生机理

    图  4  MOSFET器件与TFET器件转移特性曲线

    图  5  TFET器件剖面图

    图  6  N型TFET器件工作能带

    图  7  基于TFET器件设计的紧凑型数据选择器

    图  8  混合异质集成逻辑门(蓝色为TFET器件)

    图  9  主从式触发器电路(12个TFET晶体管)

    图  10  读写分离的7T-SRAM电路结构

    图  11  10T-SRAM电路结构

    图  12  混合异质集成处理器内核架构

    图  13  TFET-CMOS混合异质集成MCU首次流片成果

    图  14  LDO拓扑结构

  • [1] GUPTA S N, DEV R, SAMAD A, et al. IoT based smart extension board[C]. 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, 2023: 325–327. doi: 10.1109/ICDT57929.2023.10150457.
    [2] HUANG Y H, HSIEH Y C, LIN Yucheng, et al. High density embedded 3D stackable Via RRAM in advanced MCU applications[C]. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023: 1–2. doi: 10.23919/VLSITechnologyandCir57934.2023.10185230.
    [3] QIAN Liyu, LU Jie, LI Wenzhuo, et al. MCU-enabled epileptic seizure detection system with compressed learning[J]. IEEE Internet of Things Journal, 2024, 11(5): 8771–8782. doi: 10.1109/JIOT.2023.3323264.
    [4] SCHIAVONE P D, ROSSI D, DI MAURO A, et al. Arnold: An eFPGA-augmented RISC-V SoC for flexible and low-power IoT end nodes[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(4): 677–690. doi: 10.1109/TVLSI.2021.3058162.
    [5] BOL D, SCHRAMME M, MOREAU L, et al. SleepRunner: A 28-nm FDSOI ULP cortex-M0 MCU with ULL SRAM and UFBR PVT compensation for 2.6–3.6-μW/DMIPS 40–80-MHz active mode and 131-nW/kB fully retentive deep-sleep mode[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2256–2269. doi: 10.1109/JSSC.2021.3056219.
    [6] 郑黎明, 刘培国, 王宏义, 等. 无源物联网: 背景、概念、挑战及研究进展[J]. 电子与信息学报, 2023, 45(7): 2293–2310. doi: 10.11999/JEIT221219.

    ZHENG Liming, LIU Peiguo, WANG Hongyi, et al. Passive internet of things: Background, concept, challenges and progress[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2293–2310. doi: 10.11999/JEIT221219.
    [7] HUANG Cong and JIAO Hailong. C3MLS: An ultra-wide-range energy-efficient level shifter with CCLS/CMLS hybrid structure[J]. IEEE Journal of Solid-State Circuits, 2023, 58(10): 2685–2695. doi: 10.1109/JSSC.2023.3266221.
    [8] LIN Longyang, JAIN S, and ALIOTO M. Sub-nW microcontroller with dual-mode logic and self-startup for battery-indifferent sensor nodes[J]. IEEE Journal of Solid-State Circuits, 2021, 56(5): 1618–1629. doi: 10.1109/JSSC.2020.3038115.
    [9] PRABHAT P, LABBE B, KNIGHT G, et al. 27.2 M0N0: A performance-regulated 0.8-to-38MHz DVFS ARM cortex-M33 SIMD MCU with 10 nW sleep power[C]. 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, USA, 2020: 422–424. doi: 10.1109/ISSCC19947.2020.9063136.
    [10] SCHRAMME M and BOL D. UFBBR: A unified frequency and back-bias regulation unit for ultralow-power microcontrollers in 28-nm FDSOI[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(6): 2464–2477. doi: 10.1109/TCSI.2023.3257270.
    [11] KIM J S, JAVED K, MIN K H, et al. A 13.5-nA quiescent current LDO with adaptive ultra-low-power mode for low-power IoT applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(9): 3278–3282. doi: 10.1109/TCSII.2023.3263876.
    [12] SERRANO R, SARMIENTO M, DURAN C, et al. A low-power low-area SoC based in RISC-V processor for IoT applications[C]. 2021 18th International SoC Design Conference (ISOCC), Jeju Island, Korea, 2021: 375–376. doi: 10.1109/ISOCC53507.2021.9613880.
    [13] LIU Xinning, LI Xiaomin, ZHANG Huanqing, et al. SCVR-less dynamic voltage-stacking scheme for IoT MCU[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1): 103–114. doi: 10.1109/JSSC.2021.3095621.
    [14] YOKOYAMA Y, ISHII Y, NII K, et al. Cost-effective test screening method on 40-nm embedded SRAMs for low-power MCUs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(7): 1495–1499. doi: 10.1109/TVLSI.2021.3082760.
    [15] RABAEY J M, CHANDRAKASAN A, and NIKOLIC B, 周润德, 译. 数字集成电路—电路、系统与设计[M]. 2版. 北京: 电子工业出版社, 2017: 62–63.

    RABAEY J M, CHANDRAKASAN A, and NIKOLIC B, ZHOU Runde, translation. Digital Integrated Circuits: A Design Perspective[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2017: 62–63.
    [16] 刘浩宇. 适用于MCU低功耗LDO的研究与设计[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.001888.

    LIU Haoyu. Research and design of low-power LDO suitable for MCU[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.001888.
    [17] RIDGEWAY M, REYNOSO L, and CHEN Lixin. Designing a dual-ray smoke detector analog front-end with MSP430FR235x MCUs[EB/OL]. https://www.ti.com.cn/cn/lit/pdf/slaa930.pdf, 2020.
    [18] 程乔. 针对低功耗嵌入式系统的可重构片上存储结构研究[D]. [硕士论文], 西安理工大学, 2022. doi: 10.27398/d.cnki.gxalu.2022.000609.

    CHENG Qiao. Reconfigurable on-chip memory architecture for low power embedded system[D]. [Master dissertation], Xi’an University of Technology, 2022. doi: 10.27398/d.cnki.gxalu.2022.000609.
    [19] BACCARIN D, ESSENI D, and ALIOTO M. Low-standby current 4T FinFET buffers: Analysis and evaluation below 45 nm[C]. 2010 International Conference on Microelectronics, Cairo, Egypt, 2010: 296–299. doi: 10.1109/ICM.2010.5696143.
    [20] SREEKALA K S and KRISHNAKUMAR S. Subthreshold leakage power reduction by feedback sleeper-stack technique[C]. 2016 International Conference on Emerging Technological Trends (ICETT), Kollam, India, 2016: 1–7. doi: 10.1109/ICETT.2016.7873668.
    [21] FLYNN D, AITKEN R, GIBBONS A, et al. Low Power Methodology Manual: For System-on-Chip Design[M]. Springer Publishing Company, 2010: 7–8.
    [22] KRISHNAMOHAN T, KIM D, RAGHUNATHAN S, et al. Double-gate Strained-Ge heterostructure Tunneling FET (TFET) With record high drive currents and <<60mV/dec subthreshold slope[C]. 2008 IEEE International Electron Devices Meeting, San Francisco, USA, 2008. 1–3. doi: 10.1109/IEDM.2008.4796839.
    [23] 李伟. 隧穿场效应晶体管的新结构设计及应用研究[D]. [博士论文], 西安电子科技大学, 2019. doi: 10.27389/d.cnki.gxadu.2019.000132.

    LI Wei. Novel structure design and application of research on tunnel field-effect transistor[D]. [Ph. D. dissertation]. Xidian University, 2019. doi: 10.27389/d.cnki.gxadu.2019.000132.
    [24] WU Chunlei, HUANG Ru, HUANG Qianqian, et al. Design guideline for complementary Heterostructure tunnel fets with steep slope and improved output behavior[J]. IEEE Electron Device Letters, 2016, 37(1): 20–23. doi: 10.1109/LED.2015.2499183.
    [25] WANG Zhixuan, ZHONG Yuan, CHEN Cheng, et al. Ultra-low power hybrid TFET-MOSFET topologies for standard logic cells with improved comprehensive performance[C]. 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019: 1–5. doi: 10.1109/ISCAS.2019.8702101.
    [26] MORRIS D H, AVCI U E, RIOS R, et al. Design of low voltage tunneling-FET logic circuits considering asymmetric conduction characteristics[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(4): 380–388. doi: 10.1109/JETCAS.2014.2361054.
    [27] COTTER M, LIU Huichu, DATTA S, et al. Evaluation of tunnel FET-based flip-flop designs for low power, high performance applications[C]. International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2013: 430–437. doi: 10.1109/ISQED.2013.6523647.
    [28] GUPTA N, MAKOSIEJ A, VLADIMIRESCU A, et al. Ultra-low-power compact TFET flip-flop design for high-performance low-voltage applications[C]. 2016 17th International Symposium on Quality Electronic Design (ISQED), Santa Clara, USA, 2016: 107–112. doi: 10.1109/ISQED.2016.7479184.
    [29] LEE Y, KIM D, CAI Jin, et al. Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs)[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(9): 1632–1643. doi: 10.1109/TVLSI.2012.2213103.
    [30] YANG Libo, ZHU Jiadi, CHEN Cheng, et al. Combinational access tunnel FET SRAM for ultra-low power applications[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351297.
    [31] TRIVEDI A R, CARLO S, and MUKHOPADHYAY S. Exploring tunnel-FET for Ultra Low power analog applications: A case study on operational transconductance amplifier[C]. The 50th ACM/EDAC/IEEE Design Automation Conference, Austin, USA, 2013: 1–6. doi: 10.1145/2463209.2488868.
    [32] SEDIGHI B, HU X S, LIU Huichu, et al. Analog circuit design using tunnel-FETs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 39–48. doi: 10.1109/TCSI.2014.2342371.
    [33] SETTINO F, LANUZZA M, STRANGIO S, et al. Understanding the potential and limitations of tunnel FETs for low-voltage analog/mixed-signal circuits[J]. IEEE Transactions on Electron Devices, 2017, 64(6): 2736–2743. doi: 10.1109/TED.2017.2689746.
    [34] YADAV A K and ACHARYA A. Investigation of III-V tunnel FETs for analog circuit design[C]. 2021 Devices for Integrated Circuit (DevIC), Kalyani, India, 2021: 416–420. doi: 10.1109/DevIC50843.2021.9455904.
    [35] SARIPALLI V, MISHRA A, DATTA S, et al. An energy-efficient heterogeneous CMP based on hybrid TFET-CMOS cores[C]. The 48th ACM/EDAC/IEEE Design Automation Conference, San Diego, USA, 2011: 729–734.
    [36] GOPIREDDY B, SKARLATOS D, ZHU Wenjuan, et al. HetCore: TFET-CMOS hetero-device architecture for CPUs and GPUs[C]. 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, USA, 2018: 802–815. doi: 10.1109/ISCA.2018.00072.
    [37] HU V P H, LIN H H, LIN Y K, et al. Optimization of negative-capacitance vertical-tunnel FET (NCVT-FET)[J]. IEEE Transactions on Electron Devices, 2020, 67(6): 2593–2599. doi: 10.1109/TED.2020.2986793.
    [38] TALUKDAR J, RAWAT G, and MUMMANENI K. Dielectrically modulated single and double gate tunnel FET based biosensors for enhanced sensitivity[J]. IEEE Sensors Journal, 2021, 21(23): 26566–26573. doi: 10.1109/JSEN.2021.3122582.
    [39] GUHA S and PACHAL P. Heterojunction negative-capacitance tunnel-FET as a promising candidate for sub-0.4V VDD digital logic circuits[J]. IEEE Transactions on Nanotechnology, 2021, 20: 576–583. doi: 10.1109/TNANO.2021.3096252.
  • 加载中
图(14)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  302
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回