高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以全球导航卫星系统为辐射源的前向散射雷达发展综述

郑雨晴 艾小锋 王满喜 徐志明 肖顺平

郑雨晴, 艾小锋, 王满喜, 徐志明, 肖顺平. 以全球导航卫星系统为辐射源的前向散射雷达发展综述[J]. 电子与信息学报, 2024, 46(8): 3073-3093. doi: 10.11999/JEIT231255
引用本文: 郑雨晴, 艾小锋, 王满喜, 徐志明, 肖顺平. 以全球导航卫星系统为辐射源的前向散射雷达发展综述[J]. 电子与信息学报, 2024, 46(8): 3073-3093. doi: 10.11999/JEIT231255
ZHENG Yuqing, AI Xiaofeng, WANG Manxi, XU Zhiming, XIAO Shunping. Global Navigation Satellite System Forward Scatter Radar: A Review[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3073-3093. doi: 10.11999/JEIT231255
Citation: ZHENG Yuqing, AI Xiaofeng, WANG Manxi, XU Zhiming, XIAO Shunping. Global Navigation Satellite System Forward Scatter Radar: A Review[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3073-3093. doi: 10.11999/JEIT231255

以全球导航卫星系统为辐射源的前向散射雷达发展综述

doi: 10.11999/JEIT231255 cstr: 32379.14.JEIT231255
基金项目: 国家自然科学基金(62071475),国家自然科学基金重大项目课题(61890541, 61890542)
详细信息
    作者简介:

    郑雨晴:女,博士生,研究方向为前向散射雷达目标运动参数估计

    艾小锋:男,副研究员,研究方向为双基地雷达成像、特征提取

    王满喜:男,副研究员,研究方向为通信对抗

    徐志明:男,讲师,研究方向为双基地雷达目标特性与特征提取

    肖顺平:男,教授,研究方向为雷达极化信息处理及应用、电子信息系统仿真建模评估

    通讯作者:

    郑雨晴 zhengyuqing@nudt.edu.cn

  • 中图分类号: TN959

Global Navigation Satellite System Forward Scatter Radar: A Review

Funds: The National Natural Science Foundation of China (62071475), The National Natural Science Foundation of China Major Program Topics (61890541, 61890542)
  • 摘要: 前向散射雷达(FSR)可获得高水平雷达截面积(RCS)的特性使其在反隐身中占据重要地位。利用全球导航卫星系统(GNSS)作为辐射源,具有全天时全天候全地域覆盖的优势,通过部署多个接收节点可构建地面/海上/空中目标监视网络。该文针对基于GNSS的FSR发展现状,从目标检测、目标参数估计、阴影逆合成孔径雷达(SISAR)成像及目标分类识别等方面对关键技术和现存问题进行概述,并从组网探测、多目标定位、布站优化和极化信息获取等方面对基于GNSS的FSR发展趋势提出展望。
  • 图  1  基于GNSS的前向散射雷达网探测示意图

    图  2  基于GNSS的前向散射雷达系统目标探测可行性验证历程

    图  3  前向散射波与直达波之间的干涉示意图

    图  4  暗室中金属球穿越基线时的回波特性[28]

    图  5  数字式GPS接收机典型跟踪环路[29]

    图  6  3维空间目标穿越基线示意图[33]

    图  7  时域和频域的FVD[35]

    图  8  矩形空间碎片目标多普勒频散分析[37]

    图  9  晶体视频检测器

    图  10  两段分离桥架阴影信号测量的实验场景[44]

    图  11  两段分离桥架阴影信号检测[44]

    图  12  基于GPS L5信号的检测流程[46]

    图  13  GPS-FSR检测结果[48]

    图  14  基于Rényi熵的前向散射信号检测性能分析[50]

    图  15  单基线系统目标运动参数估计流程[54]

    图  16  双基线系统结构示意图

    图  17  多普勒谱图中对两目标分辨能力分析[55]

    图  18  目标运动参数估计实验[57]

    图  19  双基线系统目标运动参数估计方法总结

    图  20  基于穿越时刻的参数估计方法估计精度影响因素分析[64]

    图  21  基于GNSS的前向散射雷达拓扑结构

    图  22  汽车实测数据SISAR成像结果[69]

    图  23  基于FSSR的不规则形状目标SISAR成像[75]

    图  24  基于GNSS的SISAR像实验结果[31]

    图  25  车辆目标阴影信号分类[93]

    表  1  用于FSR目标识别的特征归纳表

    特征 特征公式 变量含义
    目标阴影长度特征 $ {\mathrm{d}}{\rm{T}} = {T_2} - {T_1} $ $ {T_1} $和$ {T_2} $为时域阴影信号开始和结束时刻,由操作员手动估计
    峰值信噪比特征 $ {\text{SN}}{{\text{R}}_{{\text{peak}}}}\left[ {{\text{dB}}} \right] = {\text{mean}}\left( {{P_{\text{n}}}} \right) - \min \left( {{P_{\text{s}}}} \right) $ 区间$\left[ {{T_1},{T_2}} \right]$内平均噪声功率与阴影信号最小值之间的差值,$ {P_{\text{n}}} $为噪声功率,$ {P_{\text{s}}} $为阴影信号功率。
    目标阴影平均功率特征 $ {P_{{\text{ave}}}}\left[ {{\text{dB}}} \right] = \lg \left( {{\mathrm{mean}}\left( {{P_{{\text{s}},i}}} \right)} \right),i = 1,2,\cdots,N $ $ N $为信号采样点数
    目标阴影平均能量特征 $ {E_{{\text{ave}}}} = {P_{{\text{ave}}}}N $ 平均功率与阴影长度的乘积
    阴影信号功率谱主瓣宽度 $W = P\left( i \right)$ $P$表示信号功率谱,$i$为功率谱第1个极小值点的位置
    目标侧影像特征 $ H\left( \eta \right) = \left| {\dot H\left( \eta \right)} \right| = \left\{ \begin{gathered} \sin \left( {\dfrac{{k{n_1}}}{{2\pi }}h\left( \eta \right)} \right) \cdot \dfrac{\lambda }{{{n_1}}},{n_1} \ne 0 \\ h\left( \eta \right),\qquad \qquad \quad \quad \;\;{n_1} = 0 \\ \end{gathered} \right. $ $ {n_1} $为垂直方向余弦,$ H\left( \eta \right) $为复侧影像$ \dot H\left( \eta \right) $的模值,也称目标的侧影像,反映目标上下边沿高度差,$ h\left( \eta \right) $为目标侧影轮廓高度差,由目标几何结构决定,$ \lambda $为信号波长,$k = \dfrac{{2\pi }}{\lambda }$
    目标侧影轮廓中线
    相位差分特征
    ${\bar \phi _{\mathrm{c}}}\left( \eta \right) = \dfrac{{{\phi _{\mathrm{c}}}\left( \eta \right) - \min \left( {{\phi _{\mathrm{c}}}\left( \eta \right)} \right)}}{{\max \left( {{\phi _{\mathrm{c}}}\left( \eta \right)} \right) - \min \left( {{\phi _{\mathrm{c}}}\left( \eta \right)} \right)}}$ ${\phi _{\mathrm{c}}}\left( \eta \right)$由$\phi \left( \eta \right) = {\text{angle}}\left( {\dot H\left( \eta \right)} \right)$进行处理后得到,可反映目标侧影轮廓中线特征
    侧影像归一化极点
    距离特征
    $ {\bar D_i} = {{D_i}}/{\mathop {\max \left( {{D_i}} \right)}\limits_{i = 1,\cdots,M - 1} } $ $M$为侧影像极点个数,它们之间的距离为
    ${D_1},{D_2},\cdots,{D_i},\cdots{D_{M - 1}}$,其中${D_i}$为侧影像起始点与第$i + 1$
    个极点间的距离,$ \mathop {\max \left( {{D_i}} \right)}\limits_{i = 1,\cdots,M - 1} $是取距离序列中的最大值
    下载: 导出CSV

    表  2  FSR目标分类研究现状总结

    辐射源 分类目标 种类 输入特征 分类方法
    GPS[79,93] 船/汽车 3 阴影信号持续时间
    阴影信号平均功率
    阴影信号平均能量
    决策树(J48)、随机森林、贝叶斯分类器(NaiveBayes和BayesNet)、最近邻算法、规则学习(rule learning)(OneR和JRip)、神经网络
    (多层感知器MLP)
    LTE[84,85] 人/不同高度的无人机(2 m, 3 m) 4/2 去噪后阴影信号PSD的PCA结果 聚类
    地面雷达发射机[86] 人类活动(坐在椅子上和前倾跌落) 2 STFT平均值 SVM
    地面雷达发射机[87] 汽车 5 去噪后阴影信号Z-Score标准化(zero-mean normalization)和PCA结果 KNN、决策树、判别分析
    北斗[94] 飞行器 3 阴影信号 稀疏自动编码器、卷积神经网络
    下载: 导出CSV
  • [1] 艾小锋, 赵锋, 刘晓斌, 等. 双/多基地雷达目标探测与识别[M]. 北京: 电子工业出版社, 2020.

    AI Xiaofeng, ZHAO Feng, LIU Xiaobin, et al. Dual/Multistatic Radar Target Detection and Recognition[M]. Beijing: Publishing House of Electronics Industry, 2020.
    [2] 李唐, 王峰, 杨新宇, 等. GNSS外辐射源空中目标探测研究现状及发展[J]. 无线电工程, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.

    LI Tang, WANG Feng, YANG Xinyu, et al. Development and status of air target detection from GNSS-based passive radar[J]. Radio Engineering, 2023, 53(7): 1639–1651. doi: 10.3969/j.issn.1003-3106.2023.07.018.
    [3] 胡程, 刘长江, 曾涛. 双基地前向散射雷达探测与成像[J]. 雷达学报, 2016, 5(3): 229–243. doi: 10.12000/JR16058.

    HU Cheng, LIU Changjiang, and ZENG Tao. Bistatic forward scattering radar detection and imaging[J]. Journal of Radars, 2016, 5(3): 229–243. doi: 10.12000/JR16058.
    [4] GARRISON J L, KOMJATHY A, ZAVOROTNY V U, et al. Wind speed measurement using forward scattered GPS signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 50–65. doi: 10.1109/36.981349.
    [5] VAN ROSSUM W L and DE WIT J J M. Forward scatter radar for remote intelligence of building interiors[J]. Electronics Letters, 2017, 53(15): 995–997. doi: 10.1049/el.2017.1514.
    [6] YANG Fan, HE Zhiming, FU Yuanhua, et al. Noncontact detection of respiration rate based on forward scatter radar[J]. Sensors, 2019, 19(21): 4778. doi: 10.3390/s19214778.
    [7] ABDUL AZIZ N H and HUSSAIN M F. Human detection with and without weapon using LTE-based passive Forward Scattering Radar System[J]. Journal of Physics: Conference Series, 2020, 1502: 012006. doi: 10.1088/1742-6596/1502/1/012006.
    [8] RAJA ABDULLAH R S A, ABDUL AZIZ N H, ABDUL RASHID N E, et al. Analysis on target detection and classification in LTE based passive forward scattering radar[J]. Sensors, 2016, 16(10): 1607. doi: 10.3390/s16101607.
    [9] ABDUL AZIZ N H, ABDUL HADI M F, ABD RAHMAN N H, et al. Detection and classification of target’s speed and size using LTE-based passive forward scattering radar[J]. Journal of Physics: Conference Series, 2022, 2250: 012008. doi: 10.1088/1742-6596/2250/1/012008.
    [10] MARTELLI T, COLONE F, and LOMBARDO P. First experimental results for a WiFi-based passive forward scatter radar[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485108.
    [11] COLONE F, MARTELLI T, and LOMBARDO P. Quasi-monostatic versus near forward scatter geometry in WiFi-based passive radar sensors[J]. IEEE Sensors Journal, 2017, 17(15): 4757–4772. doi: 10.1109/JSEN.2017.2713450.
    [12] RAJA ABDULLAH R S A, ALHAJI MUSA S, ABDUL RASHID N E, et al. Passive forward-scattering radar using digital video broadcasting satellite signal for drone detection[J]. Remote Sensing, 2020, 12(18): 3075. doi: 10.3390/rs12183075.
    [13] MUSA S A, RSA R A, SALI A, et al. DVBS based forward scattering radar for drone detection[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–8. doi: 10.23919/IRS.2019.8767456.
    [14] KABAKCHIEV H, BEHAR V, GARVANOV I, et al. FSR systems for detection of air objects using cosmic radio emissions[J]. Sensors, 2021, 21(2): 465. doi: 10.3390/s21020465.
    [15] PŁOTKA M, MALANOWSKI M, KULPA K, et al. Enhanced detection capabilities in forward scatter mode for DVB-T-based passive coherent location[C]. 2022 IEEE Radar Conference, New York, USA, 2022: 1–6. doi: 10.1109/RadarConf2248738.2022.9764245.
    [16] CONTU M, DE LUCA A, HRISTOV S, et al. Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1067–1087. doi: 10.1109/TAES.2017.2649198.
    [17] SANTI F, PIERALICE F, and PASTINA D. Joint detection and localization of vessels at sea with a GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5894–5913. doi: 10.1109/TGRS.2019.2902938.
    [18] GLASER J I. Bistatic RCS of complex objects near forward scatter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(1): 70–78. doi: 10.1109/TAES.1985.310540.
    [19] KOCH V and WESTPHAL R. New approach to a multistatic passive radar sensor for air/space defense[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(11): 24–32. doi: 10.1109/62.473409.
    [20] SUBERVIOLA I, MAYORDOMO I, and MENDIZABAL J. Experimental results of air target detection with a GPS forward-scattering radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 47–51. doi: 10.1109/LGRS.2011.2159477.
    [21] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. The experimental study of possibility for radar target detection in FSR using L1-based non-cooperative transmitter[C]. 2013 14th International Radar Symposium (IRS), Dresden, Germany, 2013: 625–630.
    [22] GARVANOV I, KABAKCHIEV C, BEHAR V, et al. Air target detection with a GPS forward-scattering radar[C]. 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 2016: 1–4. doi: 10.1109/SIELA.2016.7543000.
    [23] 赵晓彤, 郭琨毅, 盛新庆, 等. 前向雷达目标回波成分与特性分析[J]. 系统工程与电子技术, 2016, 38(11): 2523–2529. doi: 10.3969/j.issn.1001-506X.2016.11.12.

    ZHAO Xiaotong, GUO Kunyi, SHENG Xinqing, et al. Characteristics analysis on forward scattering radar echoes[J]. Systems Engineering and Electronics, 2016, 38(11): 2523–2529. doi: 10.3969/j.issn.1001-506X.2016.11.12.
    [24] FALCONI M T, COMITE D, GALLI A, et al. Forward scatter radar for air surveillance: Characterizing the target-receiver transition from far-field to near-field regions[J]. Remote Sensing, 2017, 9(1): 50. doi: 10.3390/rs9010050.
    [25] FALCONI M T, LOMBARDO P, PASTINA D, et al. A closed-form model for long- and short-range forward scatter radar signals from rectangular conductive targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1370–1390. doi: 10.1109/TAES.2019.2933974.
    [26] GASHINOVA M, DANIEL L, SIZOV V, et al. Phenomenology of Doppler forward scatter radar for surface targets observation[J]. IET Radar, Sonar & Navigation, 2013, 7(4): 422–432. doi: 10.1049/iet-rsn.2012.0233.
    [27] DE LUCA A, DANIEL L, KABAKCHIEV K, et al. Maritime FSR with moving receiver for small target detection[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 834–839. doi: 10.1109/IRS.2015.7226340.
    [28] 徐志明, 王国玉, 郑雨晴, 等. 前向散射雷达目标回波特性实验[J]. 太赫兹科学与电子信息学报, 2022, 20(3): 195–199. doi: 10.11805/TKYDA2021339.

    XU Zhiming, WANG Guoyu, ZHENG Yuqing, et al. Experimental study on target echo characteristics for forward scattering radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(3): 195–199. doi: 10.11805/TKYDA2021339.
    [29] 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016.

    LU Yu. Principle and Implementation Technology of Beidou/GPS Dual Mode Software Receiver[M]. Beijing: Publishing House of Electronics Industry, 2016.
    [30] LIU Changjiang, HU Cheng, ZENG Tao, et al. Signal modeling and experimental verification in GNSS forward scatter radar[C]. 2016 17th International Radar Symposium (IRS), Krakow, Poland, 2016: 1–6. doi: 10.1109/IRS.2016.7497340.
    [31] HU Cheng, LIU Changjiang, WANG Rui, et al. Detection and SISAR imaging of aircrafts using GNSS forward scatter radar: Signal modeling and experimental validation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 2077–2093. doi: 10.1109/TAES.2017.2683578.
    [32] LIU Changjiang, HU Cheng, WANG Rui, et al. GNSS forward scatter radar detection: Signal processing and experiment[C]. 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008215.
    [33] 郑雨晴, 艾小锋, 徐志明, 等. 基于GNSS的前向散射雷达网目标穿越特性研究[J/OL]. 系统工程与电子技术, 1–19. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1736.009.html, 2022.

    ZHENG Yuqing, AI Xiaofeng, XU Zhiming, et al. Characteristics of target crossing the baseline in FSR net based on GNSS[J/OL]. Systems Engineering and Electronics, 1–19. http://kns.cnki.net/kcms/detail/11.2422.TN.20221229.1736.009.html, 2022.
    [34] ZHENG Yuqing, AI Xiaofeng, XU Zhiming, et al. Characteristics analysis on dynamic forward scattering echoes[C]. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022: 1–3. doi: 10.1109/ACES-China56081.2022.10065134.
    [35] AI Xiaofeng, ZHENG Yuqing, XU Zhiming, et al. Characteristics of target crossing the baseline in FSR: Experiment results[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3503105. doi: 10.1109/LGRS.2023.3264683.
    [36] HUANG Defeng. Doppler analysis of forward scattering radar with opportunistic signals from LEO satellites[J]. IEEE Access, 2022, 10: 109597–109608. doi: 10.1109/ACCESS.2022.3214844.
    [37] HUANG D D. Doppler analysis for flying object with microwave signal from low Earth orbit satellite[C]. 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022: 333–334. doi: 10.1109/ISAP53582.2022.9998729.
    [38] SHEN Xi and HUANG D D. Forward scatter shadow ratio for passive forward scatter radar[C]. 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022: 39–40. doi: 10.1109/ISAP53582.2022.9998598.
    [39] GASHINOVA M, SIZOV V, ZAKARIA N A, et al. Signal detection in multi-frequency forward scatter radar[C]. The 7th European Radar Conference, Paris, France, 2010: 276–279.
    [40] HU Cheng, SIZOV V, ANTONIOU M, et al. Optimal signal processing in ground-based forward scatter micro radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3006–3026. doi: 10.1109/TAES.2012.6324674.
    [41] USTALLI N, LOMBARDO P, and PASTINA D. Detection performance of a forward scatter radar using a crystal video detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1093–1114. doi: 10.1109/TAES.2017.2774659.
    [42] USTALLI N, LOMBARDO P, and PASTINA D. Generalized likelihood ratio detection schemes for forward scatter radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2951–2970. doi: 10.1109/TAES.2018.2836518.
    [43] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Moving target FSR shadow detection using GPS signals[C]. Proceeding of the Third International Conference on Telecommunications and Remote Sensing, Luxembourg, 2014: 34–40. doi: 10.5220/0005420900340040.
    [44] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. The study of target shadows using passive FSR systems[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 628–633. doi: 10.1109/IRS.2015.7226288.
    [45] GAO Chaoqun, YANG Dongkai, QIU Xuejing, et al. Improved mean clustering algorithm of target detection with GNSS forward-scattering radar[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 2291–2293. doi: 10.1109/IGARSS.2017.8127447.
    [46] BEHAR V and KABAKCHIEV C. Detectability of air targets using bistatic radar based on GPS L5 signals[C]. 2011 12th International Radar Symposium (IRS), Leipzig, Germany, 2011: 212–217.
    [47] BEHAR V, KABAKCHIEV C, and ROHLING H. Air target detection using navigation receivers based on GPS L5 signals[C]. The 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2011: 333–337.
    [48] KABAKCHIEV H, GARVANOV I, BEHAR V, et al. Multi-channel target shadow detection in GPS FSR[J]. Cybernetics and Information Technologies, 2019, 19(1): 116–132. doi: 10.2478/CAIT-2019-0007.
    [49] LIU Mingqian, ZHANG Zhenju, CHEN Yunfei, et al. Forward scatter radar meets satellite: Passive sensing of aerial target using satellite communication waveforms[J]. Remote Sensing, 2022, 14(6): 1375. doi: 10.3390/rs14061375.
    [50] ZHENG Yuqing, AI Xiaofeng, YANG Yong, et al. Detection method of forward-scatter signal based on Rényi entropy[J]. Journal of Systems Engineering and Electronics, 2023. doi: 10.23919/JSEE.2023.000122.
    [51] BEHAR V, KABAKCHIEV C, and GARVANOV I. Marine target classification and parameter estimation using forward scattering radar[C]. 2012 13th International Radar Symposium, Warsaw, Poland, 2012: 539–542. doi: 10.1109/IRS.2012.6233381.
    [52] DE LUCA A, CONTU M, HRISTOV S, et al. FSR velocity estimation using spectrogram[C]. 2016 17th International Radar Symposium (IRS), Krakow, Poland, 2016: 1–5. doi: 10.1109/IRS.2016.7497338.
    [53] USTALLI N, DI LELLO F, PASTINA D, et al. Two-dimensional filter bank design for velocity estimation in forward scatter radar configuration[C]. 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–10. doi: 10.23919/IRS.2017.8008188.
    [54] USTALLI N, PASTINA D, and LOMBARDO P. Kinematic parameters extraction from a single node forward scatter radar configuration[C]. 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–10. doi: 10.23919/IRS.2018.8448024.
    [55] USTALLI N, PASTINA D, BONGIOANNI C, et al. Motion parameters estimation in dual-baseline Forward Scatter Radar configuration[C]. International Conference on Radar Systems (Radar 2017), Belfast, Republic of Ireland, 2017: 1–6. doi: 10.1049/cp.2017.0400.
    [56] USTALLI N, PASTINA D, and LOMBARDO P. Optimal receivers positioning for target motion parameters estimation in dual-baseline FSR systems: Preliminary results[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–9. doi: 10.23919/IRS.2019.8768160.
    [57] USTALLI N, PASTINA D, and LOMBARDO P. Target motion parameters estimation in forward scatter radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 226–248. doi: 10.1109/TAES.2019.2913731.
    [58] 周超. 前向散射雷达目标跟踪与SISAR成像技术研究[D]. [硕士论文], 苏州大学, 2013.

    ZHOU Chao. Research on forward scattering radar target tracking and SISAR imaging technology[D]. [Master dissertation], Soochow University, 2013.
    [59] USTALLI N, LOMBARDO P, and PASTINA D. Target localization and velocity estimation in near forward scatter radar systems: Preliminary results[C]. 2019 International Radar Conference (RADAR), Toulon, France, 2019: 1–6. doi: 10.1109/RADAR41533.2019.171393.
    [60] USTALLI N, PASTINA D, and LOMBARDO P. Target kinematic parameters estimation in single input multi output Forward Scatter Radar configuration[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835786.
    [61] HAMDOLLAHZADEH M, AMIRI R, and BEHNIA F. Moving target localization in bistatic forward scatter radars: Performance study and efficient estimators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1582–1594. doi: 10.1109/TAES.2019.2934007.
    [62] ZHENG Yuqing, AI Xiaofeng, XU Zhiming, et al. Parameter estimation based on crossing time difference and Doppler rate in FSR network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027105. doi: 10.1109/LGRS.2022.3209545.
    [63] PASTINA D, CONTU M, LOMBARDO P, et al. Target motion estimation via multi‐node forward scatter radar system[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 3–14. doi: 10.1049/iet-rsn.2015.0130.
    [64] 郑雨晴, 艾小锋, 徐志明, 等. 基于穿越时刻的前向散射雷达网目标参数估计[J]. 系统工程与电子技术, 2023, 45(5): 1323–1332. doi: 10.12305/j.issn.1001-506X.2023.05.08.

    ZHENG Yuqing, AI Xiaofeng, XU Zhiming, et al. Target parameters estimation of FSR net based on crossing times[J]. Systems Engineering and Electronics, 2023, 45(5): 1323–1332. doi: 10.12305/j.issn.1001-506X.2023.05.08.
    [65] AI Xiaofeng, ZHENG Yuqing, XU Zhiming, et al. Parameter estimation for uniformly accelerating moving target in the forward scatter radar network[J]. Remote Sensing, 2022, 14(4): 1006. doi: 10.3390/rs14041006.
    [66] HU Cheng, WANG Li, and LIU Changjiang. SISAR imaging method based on GNSS signal: Theory and experimental results[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059223.
    [67] 马恒, 许江宁, 朱涛. 基于天基发射源的SISAR全息信号表示及其成像方法[J]. 系统工程与电子技术, 2010, 32(4): 694–698.

    MA Heng, XU Jiangning, and ZHU Tao. Radio holographic signal expression and shadow imaging method of space-based SISAR[J]. Systems Engineering and Electronics, 2010, 32(4): 694–698.
    [68] CHAPURSKIY V V and SABLIN V N. SISAR: Shadow inverse synthetic aperture radiolocation[C]. Record of the IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 322–328. doi: 10.1109/RADAR.2000.851854.
    [69] HRISTOV S, DANIEL L, HOARE E, et al. Target shadow profile reconstruction in ground-based forward scatter radar[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 846–851. doi: 10.1109/RADAR.2015.7131113.
    [70] 张涛, 张群, 罗斌凤, 等. 基于时频分析的双基地前向散射雷达侧影成像[J]. 电子学报, 2001, 29(6): 726–729. doi: 10.3321/j.issn:0372-2112.2001.06.002.

    ZHANG Tao, ZHANG Qun, LUO Binfeng, et al. Shadow imaging for bistatic radar based on forward scattering by joint time frequency analysis[J]. Acta Electronica Sinica, 2001, 29(6): 726–729. doi: 10.3321/j.issn:0372-2112.2001.06.002.
    [71] 张涛, 罗永健, 张群, 等. SISAR侧影像的校正及特征提取[J]. 电子与信息学报, 2002, 24(11): 1634–1640.

    ZHANG Tao, LUO Yongjian, ZHANG Qun, et al. Calibration and extraction of features for SISAR shadow image[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1634–1640.
    [72] 曹运合, 张涛, 罗斌凤, 等. 前向散射雷达目标成像实验研究[J]. 现代雷达, 2009, 31(1): 18–20,23. doi: 10.3969/j.issn.1004-7859.2009.01.005.

    CAO Yunhe, ZHANG Tao, LUO Binfeng, et al. Experimental imaging results for forward scattering hedge radar[J]. Modern Radar, 2009, 31(1): 18–20,23. doi: 10.3969/j.issn.1004-7859.2009.01.005.
    [73] ZENG Tao, LI X, HU Cheng, et al. Investigation on accurate signal modelling and imaging of the moving target in ground-based forward scatter radar[J]. IET Radar, Sonar & Navigation, 2011, 5(8): 862–870. doi: 10.1049/iet-rsn.2010.0276.
    [74] HU Cheng, ZHOU Chao, ZENG Tao, et al. Radio holography signal reconstruction and shadow inverse synthetic aperture radar imaging in ground‐based forward scatter radar: Theory and experimental results[J]. IET Radar, Sonar & Navigation, 2014, 8(8): 907–916. doi: 10.1049/iet-rsn.2013.0267.
    [75] SHEN Xi and HUANG Defeng. Forward scatter shadow ratio: Concept and its application in shadow profile retrieval[J]. IEEE Access, 2023, 11: 77147–77162. doi: 10.1109/ACCESS.2023.3298107.
    [76] 刘长江. 前向散射雷达空中运动目标参数估计与SISAR成像研究[D]. [博士论文], 北京理工大学, 2017. doi: 10.26948/d.cnki.gbjlu.2017.000887.

    LIU Changjiang. Research on forward scatter radar air moving target parameter estimation and SISAR imaging[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2017. doi: 10.26948/d.cnki.gbjlu.2017.000887.
    [77] HU Cheng, LIU Changjiang, WANG Rui, et al. Improved reconstruction of radio holographic signal for forward scatter radar imaging[J]. Sensors, 2016, 16(5): 651. doi: 10.3390/s16050651.
    [78] THEODOROU I, ILIOUDIS C, CLEMENTE C, et al. SISAR imaging for space debris based on nanosatellites[J]. IET Radar, Sonar & Navigation, 2020, 14(8): 1192–1201. doi: 10.1049/iet-rsn.2019.0574.
    [79] KABAKCHIEV C, BEHAR V, GARVANOV I, et al. Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based forward scattering radar[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 793–797. doi: 10.1109/ICASSP.2014.6853705.
    [80] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Aircraft detection at short distances by GPS FSR system[C]. 8th International Conference on Sensor Device Technologies and Applications, Rome, Italy, 2017: 63–67.
    [81] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Comparative analysis of two GPS forward scattering systems for cars parameter estimation[C]. 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–7. doi: 10.23919/IRS.2018.8448059.
    [82] CHERNIAKOV M, ABDULLAH R S A R, JANČOVIČ P, et al. Automatic ground target classification using forward scattering radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(5): 427–437. doi: 10.1049/ip-rsn:20050028.
    [83] ABD RASHID N E B. Automatic vehicle classification in a low frequency forward scatter micro-radar[D]. [Ph. D. dissertation], University of Birmingham, 2011.
    [84] AZIZ N H A, PHALIP L N, and RAHMAN N H A. Human detection and classification using passive forward scattering radar system at different places[C]. 6th International Conference on Computational Science and Technology, Kota Kinabalu, Malaysia, 2020: 95–104. doi: 10.1007/978-981-15-0058-9_10.
    [85] ABDUL AZIZ N H, MOHD FODZI M H, MOHD SHARIFF K K, et al. Analysis on drone detection and classification in LTE-based passive forward scattering radar system[J]. International Journal of Integrated Engineering, 2023, 15(3): 112–123. doi: 10.30880/ijie.2023.15.03.011.
    [86] ALNAEB A, ABDULLAH R S A R, SALAH A A, et al. Detection and classification real-time of fall events from the daily activities of human using forward scattering radar[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10. doi: 10.23919/IRS.2019.8768130.
    [87] KANONA M E A, ALIAS M Y, HASSAN M K, et al. A machine learning based vehicle classification in forward scattering radar[J]. IEEE Access, 2022, 10: 64688–64700. doi: 10.1109/ACCESS.2022.3183127.
    [88] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Study of moving target shadows using passive Forward Scatter radar systems[C]. 2014 15th International Radar Symposium (IRS), Gdansk, Poland, 2014: 1–4. doi: 10.1109/IRS.2014.6869277.
    [89] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. The experimental study of moving targets radio shadows using GPS signals[C]. The Sixth International Conference on Sensor Device Technologies and Applications (SENSORDEVICES), Venice, Italy, 2015: 138–141.
    [90] GARVANOV I, KABAKCHIEV C, BEHAR V, et al. Target detection using a GPS forward-scattering radar[C]. 2015 International Conference on Engineering and Telecommunication (EnT), Moscow, Russia, 2015: 29–33. doi: 10.1109/EnT.2015.20.
    [91] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Detection and classification of objects from their radio shadows of GPS signals[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 906–911. doi: 10.1109/IRS.2015.7226336.
    [92] KABAKCHIEV C, GARVANOV I, BEHAR V, et al. Experimental parameter estimation of vehicles GPS shadows by forward scattering systems[C]. 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–7. doi: 10.23919/IRS.2017.8008216.
    [93] KABAKCHIEV C, KABAKCHIEVA D, GARVANOV I, et al. Data mining classification of cars based on GPS shadows in forward scatter radar systems[C]. 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008217.
    [94] 祝兴晟. 基于北斗导航卫星的前向散射波飞行器探测方法研究[D]. [硕士论文], 哈尔滨工业大学, 2019. doi: 10.27061/d.cnki.ghgdu.2019.000571.

    ZHU Xingsheng. A research on target aircraft detection methods based on forward scattering wave of Beidou navigation satellite[D]. [Master dissertation], Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.000571.
    [95] 胡程, 龙腾, 曾涛, 等. 前向散射雷达地表杂波物理建模及频谱扩展分析[J]. 中国科学: 信息科学, 2010, 40(12): 1646–1659. doi: 10.1360/zf2010-40-12-1646.

    LONG Teng, HU Cheng, ZENG Tao, et al. Physical modeling and spectrum spread analysis of surface clutter in forward scattering radar[J]. Science China Information Sciences, 2010, 53(11): 2310–2322. doi: 10.1007/s11432-010-4085-7.
    [96] 李文海, 董锡超, 胡程. 前向散射雷达海面目标探测信号建模与分析[J]. 信号处理, 2019, 35(6): 994–1001. doi: 10.16798/j.issn.1003-0530.2019.06.009.

    LI Wenhai, DONG Xichao, and HU Cheng. Signal modeling and analysis of forward scatter radar in sea surface target detection[J]. Journal of Signal Processing, 2019, 35(6): 994–1001. doi: 10.16798/j.issn.1003-0530.2019.06.009.
    [97] ISMAIL N N, RASHID N E A, KHAN Z I, et al. Empirical model for Terengganu forward scatter radar seaside clutter with UHF band[J]. Journal of Fundamental and Applied Sciences, 2017, 9(3S): 189–198. doi: 10.4314/jfas.v9i3s.16.
    [98] 胡程, 孙鹭怡, 曾涛, 等. 一种精确的前向散射雷达三维目标跟踪方法[J]. 北京理工大学学报, 2012, 32(9): 942–948. doi: 10.3969/j.issn.1001-0645.2012.09.013.

    HU Cheng, SUN Luyi, ZENG Tao, et al. Accurate three-dimensional target tracking in forward scattering radar[J]. Transactions of Beijing Institute of Technology, 2012, 32(9): 942–948. doi: 10.3969/j.issn.1001-0645.2012.09.013.
    [99] 胡明皓, 李飞, 程力睿. 双基地雷达反隐身矩形组网部署探讨[J]. 舰船电子对抗, 2014, 37(2): 39–42. doi: 10.3969/j.issn.1673-9167.2014.02.010.

    HU Minghao, LI Fei, and CHENG Lirui. Discussion of rectangle netting disposition for bistatic radar anti-stealth[J]. Shipboard Electronic Countermeasure, 2014, 37(2): 39–42. doi: 10.3969/j.issn.1673-9167.2014.02.010.
    [100] 李海鹏, 冯大政, 王晓辉, 等. 双基地雷达栅栏覆盖的二维布站优化方法[J]. 电子与信息学报, 2023, 45(4): 1275–1284. doi: 10.11999/JEIT220215.

    LI Haipeng, FENG Dazheng, WANG Xiaohui, et al. Two-dimensional deployment optimization method for the barrier coverage of bistatic radars[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1275–1284. doi: 10.11999/JEIT220215.
    [101] ZENG Dazhi, LI Xiaoliang, HU Cheng, et al. Effect of the polarization on SISAR imaging and feature recognition in forward scattering radar[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1613–1616. doi: 10.1109/IGARSS.2010.5652498.
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  125
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2024-07-15
  • 网络出版日期:  2024-07-24
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回