高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向数字信号处理领域的近似计算技术应用与研究进展

王旭 陈珂 闫成刚 王成华 刘伟强

王旭, 陈珂, 闫成刚, 王成华, 刘伟强. 面向数字信号处理领域的近似计算技术应用与研究进展[J]. 电子与信息学报, 2024, 46(5): 1843-1852. doi: 10.11999/JEIT231245
引用本文: 王旭, 陈珂, 闫成刚, 王成华, 刘伟强. 面向数字信号处理领域的近似计算技术应用与研究进展[J]. 电子与信息学报, 2024, 46(5): 1843-1852. doi: 10.11999/JEIT231245
WANG Xu, CHEN Ke, YAN Chenggang, WANG Chenghua, LIU Weiqiang. Progress in The Application and Research of Approximate Computation Techniques Oriented to The Field of Digital Signal Processing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1843-1852. doi: 10.11999/JEIT231245
Citation: WANG Xu, CHEN Ke, YAN Chenggang, WANG Chenghua, LIU Weiqiang. Progress in The Application and Research of Approximate Computation Techniques Oriented to The Field of Digital Signal Processing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1843-1852. doi: 10.11999/JEIT231245

面向数字信号处理领域的近似计算技术应用与研究进展

doi: 10.11999/JEIT231245
基金项目: 国家重点研发计划青年科学家项目(2022YFB4500200),国家自然科学基金(62101252, 62022041)
详细信息
    作者简介:

    王旭:女,博士生,研究方向为近似计算

    陈珂:男,副研究员,研究方向为近似计算电路设计

    闫成刚:男,副研究员,研究方向为混合信号集成电路设计

    王成华:男,教授,研究方向为集成电路设计、验证与测试

    刘伟强:男,教授,研究方向为高能效高安全性新兴计算集成电路与系统

    通讯作者:

    刘伟强 liuweiqiang@nuaa.edu.cn

  • 中图分类号: TN402; TP183

Progress in The Application and Research of Approximate Computation Techniques Oriented to The Field of Digital Signal Processing

Funds: The National Key Research and Development Program of China (2022YFB4500200), The National Natural Science Foundation of China (62101252, 62022041)
  • 摘要: 在信号处理领域,近似计算技术备受关注。复杂算法和海量数据限制了应用的处理速度且增加了系统硬件消耗。由于信号具有冗余性,精确结果并非必需,满足用户可接受的结果已足够。因此,采用近似计算技术可以有效减少计算量,提高计算效率和系统性能。该文以近似计算技术的不同设计层次为切入,首先介绍了信号处理应用的特点,综述了近年来近似计算技术在算法和电路层面的研究进展,并调研了通信、视频图像以及雷达等信号处理方向的近似计算技术方案。最后,对该领域的发展方向进行了讨论和展望,为推动近似计算技术在信号处理领域的应用提供了思路。
  • 图  1  近似计算技术及其应用

    表  1  加法器近似技术

    近似方法相关工作概述
    非分段推测近似文献[6]通过缩短进位链来获得更快速和更高性能的加法器。
    分段推测近似文献[79]
    晶体管级近似文献[1012]通过减少晶体管和基本门的数量,显著降低功耗。
    下载: 导出CSV

    表  2  定点乘法器近似技术

    近似方法相关工作概述
    操作数近似文献[14]通过将二进制乘法转换为对数域的加法,具有极低的功耗。
    阵列近似文献[15]通过对部分积矩阵的一部分低有效位直接舍去,以达到调整输出位宽和降低乘法器功耗面积的目的。
    部分积近似文献[1618]利用卡诺图对Booth编码结果进行优化,从而精简 Booth 算法的部分积表达式。
    压缩器近似文献[1921]通过切断压缩器同级之间进位链使得乘法器在功耗、延迟和晶体管数量方面都实现了显著降低。
    下载: 导出CSV

    表  3  除法器近似技术

    近似方法相关工作概述
    阵列近似文献[26, 27]对传统阵列结构中的减法器进行近似设计,降低除法器阵列的复杂度。
    操作数近似文献[28, 29]对操作数进行截断,或者从首位 1 开始截断,在较小精度损失下大大减小了运算延时和能量。
    阵列和操作数混合近似文献[30]利用卡诺图对 Booth编码结果进行优化,从而精简 Booth 算法的部分积表达式。
    下载: 导出CSV

    表  4  乘法累加器近似技术

    近似方法相关工作概述
    乘法器近似文献[31, 32]通过将乘法操作数进行分段并设计近似 MAC。
    加法器近似文献[33, 34]通过将近似加法器运用到有符号 MAC 单元的最后一步进位传播加法器中,
    同时使用 VOS 调节输入电压,最终实现功耗降低。
    乘法加法阵列合并近似文献[3537]通过将累加插入到乘法部分积阵列中,设计近似MAC 单元。
    下载: 导出CSV
  • [1] LIU Weiqiang and LOMBARDI F. Approximate Computing[M]. Cham: Springer, 2022: 365–368. doi: 10.1007/978-3-030-98347-5.
    [2] LIU Weiqiang, LOMBARDI F, and SCHULTE M. Approximate computing: From circuits to applications[J]. Proceedings of the IEEE, 2020, 108(12): 2103–2107. doi: 10.1109/JPROC.2020.3033361.
    [3] CHIPPA V K, MOHAPATRA D, ROY K, et al. Scalable effort hardware design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(9): 2004–2016. doi: 10.1109/TVLSI.2013.2276759.
    [4] NOWICK S M. Design of a low-latency asynchronous adder using speculative completion[J]. IEE Proceedings - Computers and Digital Techniques, 1996, 143(5): 301–307. doi: 10.1049/ip-cdt:19960704.
    [5] LU S L. Speeding up processing with approximation circuits[J]. Computer, 2004, 37(3): 67–73. doi: 10.1109/MC.2004.1274006.
    [6] ESPOSITO D, DE CARO D, NAPOLI E, et al. Variable latency speculative Han-Carlson adder[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(5): 1353–1361. doi: 10.1109/TCSI.2015.2403036.
    [7] SEOK H, SEO H, LEE J, et al. A novel efficient approximate adder design using single input pair based computation[C]. 2022 19th International SoC Design Conference (ISOCC), Gangneung-si, Korea, 2022: 57–58. doi: 10.1109/ISOCC56007.2022.10031341.
    [8] SEO H and KIM Y. A low latency approximate adder design based on dual sub-adders with error recovery[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(3): 811–816. doi: 10.1109/TETC.2023.3270963.
    [9] MANOHAR P S, ROHAN B, RAMANA P V S, et al. Implementation of carry look Ahead adder with 2-bit approximate adder[C]. 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2023: 1543–1547. doi: 10.1109/ICAAIC56838.2023.10140683.
    [10] YAN Aibin, WEI Shaojie, LI Zhixing, et al. Design of low-cost approximate CMOS full adders[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181531.
    [11] LAGIDI P, ISWARYA A, RAJESH G, et al. Design of 16-bit and 32-bit approximate full adder using majority logic[C]. 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 2021: 1–5. doi: 10.1109/GCAT52182.2021.9587782.
    [12] LIU Bo, XUE Anfeng, WANG Ziyu, et al. A reconfigurable approximate computing architecture with dual-VDD for low-power Binarized weight network deployment[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(1): 291–295. doi: 10.1109/TCSII.2022.3196045.
    [13] MITCHELL J N. Computer multiplication and division using binary logarithms[J]. IRE Transactions on Electronic Computers, 1962, EC-11(4): 512–517. doi: 10.1109/TEC.1962.5219391.
    [14] KIM M S, DEL BARRIO A A, OLIVEIRA L T, et al. Efficient Mitchell's approximate log multipliers for convolutional neural networks[J]. IEEE Transactions on Computers, 2019, 68(5): 660–675. doi: 10.1109/TC.2018.2880742.
    [15] NUNZIATA I, ZACHARELOS E, SAGGESE G, et al. Approximate recursive multipliers using carry truncation and error compensation[C]. 2022 17th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 2022: 137–140. doi: 10.1109/PRIME55000.2022.9816787.
    [16] WARIS H, WANG Chenghua, LIU Weiqiang, et al. Hybrid partial product-based high-performance approximate recursive multipliers[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 507–513. doi: 10.1109/TETC.2020.3013977.
    [17] SHANKAR R G and ANANTHI D R. Approximate booth multipliers using compressors and counter[C]. 2023 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 2023: 1658–1662. doi: 10.1109/ICICT57646.2023.10134198.
    [18] LIU Bo, CAI Hao, ZHANG Zilong, et al. Multiplication circuit architecture for error- tolerant CNN-based keywords speech recognition[J]. IEEE Design & Test, 2023, 40(3): 26–35. doi: 10.1109/MDAT.2021.3135346.
    [19] SAYADI L, TIMARCHI S, and SHEIKH-AKBARI A. Two efficient approximate unsigned multipliers by developing new configuration for approximate 4: 2 compressors[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(4): 1649–1659. doi: 10.1109/TCSI.2023.3242558.
    [20] ZHANG Mingtao, NISHIZAWA S, and KIMURA S. Area efficient approximate 4-2 compressor and probability-based error adjustment for approximate multiplier[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(5): 1714–1718. doi: 10.1109/TCSII.2023.3257852.
    [21] XIE Na, ZHANG Renyuan, YAN Han, et al. Compressors evolution based high speed and energy efficient approximate signed multiplier[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963435.
    [22] TONG J Y F, NAGLE D, and RUTENBAR R A. Reducing power by optimizing the necessary precision/range of floating-point arithmetic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2000, 8(3): 273–286. doi: 10.1109/92.845894.
    [23] EILERT J, EHLIAR A, and LIU Dake. Using low precision floating point numbers to reduce memory cost for MP3 decoding[C]. 2004 IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, 2004: 119–122. doi: 10.1109/MMSP.2004.1436435.
    [24] ZHANG Hang, PUTIC M, and LACH J. Low power GPGPU computation with imprecise hardware[C]. 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, USA, 2014: 1–6. doi: 10.1109/dac.2014.6881426.
    [25] YIN Peipei, WANG Chenghua, LIU Weiqiang, et al. Design and performance evaluation of approximate floating-point multipliers[C]. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016: 296–301. doi: 10.1109/ISVLSI.2016.15.
    [26] SAVIO M M D, DEEPA T, DHARSHINI P D, et al. Design and implementation of approximate divider for error-resilient image processing applications[C]. 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichirappalli, India, 2023: 1–5. doi: 10.1109/ICEEICT56924.2023.10157050.
    [27] SHRIRAM A, TIWARI A, ANIL KUMAR U, et al. Power efficient approximate divider architecture for error resilient applications[C]. 2022 IEEE 6th Conference on Information and Communication Technology (CICT), Gwalior, India, 2022: 1–6. doi: 10.1109/CICT56698.2022.9997960.
    [28] WU Yong, JIANG Honglan, MA Zining, et al. An energy-efficient approximate divider based on logarithmic conversion and piecewise constant approximation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 2655–2668. doi: 10.1109/TCSI.2022.3167894.
    [29] SAADAT H, JAVAID H, and PARAMESWARAN S. Approximate integer and floating-point dividers with near-zero error bias[C]. 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, USA, 2019: 1–6. doi: 10.1145/3316781.3317773.
    [30] LIU Weiqiang, XU Tao, LI Jing, et al. Design of unsigned approximate hybrid dividers based on restoring array and logarithmic dividers[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 339–350. doi: 10.1109/TETC.2020.3022290.
    [31] WUERDIG R N, SARTORI M L L, ABREU B A, et al. Mitigating asynchronous QDI drawbacks on MAC operators with approximate multipliers[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1269–1273. doi: 10.1109/ISCAS48785.2022.9937420.
    [32] MISHRA V, PANDEY D, SINGH S, et al. ART-MAC: Approximate rounding and truncation based MAC unit for fault-tolerant applications[C]. 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, USA, 2022: 1640–1644. doi: 10.1109/ISCAS48785.2022.9937437.
    [33] ESPOSITO D, DE CARO D, NAPOLI E, et al. On the use of approximate adders in carry-save multiplier-accumulators[C]. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, USA, 2017: 1–4. doi: 10.1109/ISCAS.2017.8050437.
    [34] WANG Ziyu, WEI Qingwen, XUE Anfeng, et al. Low-power computing unit based on heterogeneous approximate structure for binary convolutional neural network[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963452.
    [35] MEO G D, SAGGESE G, STROLLO A G M, et al. Approximate MAC unit using static segmentation[J]. IEEE Transactions on Emerging Topics in Computing, 2023. doi: 10.1109/TETC.2023.3315301.
    [36] LIU Bo, ZHANG Zilong, CAI Hao, et al. Self-compensation tensor multiplication unit for adaptive approximate computing in low-power CNN processing[J]. Science China Information Sciences, 2022, 65(4): 149403. doi: 10.1007/s11432-021-3242-6.
    [37] LIU Bo, ZHANG Renyuan, SHEN Qiao, et al. W-AMA: Weight-aware approximate multiplication architecture for neural processing[J]. Computers and Electrical Engineering, 2023, 111: 108921. doi: 10.1016/j.compeleceng.2023.108921.
    [38] JIANG Honglan, LIU Leibo, JONKER P P, et al. A high-performance and energy-efficient FIR adaptive filter using approximate distributed arithmetic circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(1): 313–326. doi: 10.1109/TCSI.2018.2856513.
    [39] ESPOSITO D, DI MEO G, DE CARO D, et al. Quality-scalable approximate LMS filter[C]. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 2018: 849–852. doi: 10.1109/ICECS.2018.8617858.
    [40] DI MEO G, DE CARO D, PETRA N, et al. A novel low-power DLMS adaptive filter with sign-magnitude learning and approximated FIR section[C]. 2022 17th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 2022: 217–220. doi: 10.1109/PRIME55000.2022.9816770.
    [41] MONTEIRO M, SEIDEL I, GRELLERT M, et al. Exploring the impacts of multiple kernel sizes of Gaussian filters combined to approximate computing in canny edge detection[C]. 2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS), Puerto Varas, Chile, 2022: 1–4. doi: 10.1109/LASCAS53948.2022.9789080.
    [42] BERGLAND G. Fast Fourier transform hardware implementations-An overview[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2): 104–108. doi: 10.1109/TAU.1969.1162041.
    [43] ELANGO K and MUNIANDI K. VLSI implementation of an area and energy efficient FFT/IFFT core for MIMO-OFDM applications[J]. Annals of Telecommunications, 2020, 75(5/6): 215–227. doi: 10.1007/s12243-019-00742-6.
    [44] LIU Bo, DING Xiaoling, CAI Hao, et al. Precision adaptive MFCC based on R2SDF-FFT and approximate computing for low-power speech keywords recognition[J]. IEEE Circuits and Systems Magazine, 2021, 21(4): 24–39. doi: 10.1109/MCAS.2021.3118175.
    [45] LIU Weiqiang, LIAO Qicong, QIAO Fei, et al. Approximate designs for Fast Fourier Transform (FFT) with application to speech recognition[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(12): 4727–4739. doi: 10.1109/TCSI.2019.2933321.
    [46] CHEN W H, SMITH C, and FRALICK S. A fast computational algorithm for the discrete cosine transform[J]. IEEE Transactions on Communications, 1977, 25(9): 1004–1009. doi: 10.1109/TCOM.1977.1093941.
    [47] POTLURI U S, MADANAYAKE A, CINTRA R J, et al. Improved 8-point approximate DCT for image and video compression requiring only 14 additions[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(6): 1727–1740. doi: 10.1109/TCSI.2013.2295022.
    [48] DA SILVEIRA T L T, CANTERLE D R, COELHO D F G, et al. A class of low-complexity DCT-like transforms for image and video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4364–4375. doi: 10.1109/TCSVT.2021.3134054.
    [49] XING Yan, ZHANG Ziji, QIAN Yiduan, et al. An energy-efficient approximate DCT for wireless capsule endoscopy application[C]. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018: 1–4. doi: 10.1109/ISCAS.2018.8351769.
    [50] CAI Lulin, QIAN Yiduan, HE Yajuan, et al. Design of approximate multiplierless DCT with CSD encoding for image processing[C]. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021: 1–4. doi: 10.1109/ISCAS51556.2021.9401200.
    [51] JANHUNEN J, PITKANEN T, SILVEN O, et al. Fixed- and floating-point processor comparison for MIMO-OFDM detector[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(8): 1588–1598. doi: 10.1109/JSTSP.2011.2165830.
    [52] AMIN-NEJAD S, BASHARKHAH K, and GASHTEROODKHANI T A. Floating point versus fixed point tradeoffs in FPGA implementations of QR decomposition algorithm[J]. European Journal of Electrical Engineering and Computer Science, 2019, 3(5). doi: 10.24018/EJECE.2019.3.5.127.
    [53] HU Yao and KOIBUCHI M. Accelerating MPI communication using floating-point compression on lossy interconnection networks[C]. 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, Canada, 2021: 355–358. doi: 10.1109/LCN52139.2021.9524942.
    [54] PARK J, CHOI J H, and ROY K. Dynamic bit-width adaptation in DCT: An approach to trade off image quality and computation energy[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(5): 787–793. doi: 10.1109/TVLSI.2009.2016839.
    [55] SNIGDHA F S, SENGUPTA D, HU Jiang, et al. Optimal design of JPEG hardware under the approximate computing paradigm[C]. 2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, USA, 2016: 1–6. doi: 10.1145/2897937.2898057.
    [56] PU Yu, DE GYVEZ J P, CORPORAAL H, et al. An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 668–680. doi: 10.1109/JSSC.2009.2039684.
    [57] FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi: 10.1109/JSTARS.2013.2263309.
    [58] JIANG Chenglong, ZHANG Bingchen, FANG Jian, et al. Efficient ℓ q regularisation algorithm with range-azimuth decoupled for SAR imaging[J]. Electronics Letters, 2014, 50(3): 204–205. doi: 10.1049/el.2013.1989.
    [59] LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015.
    [60] LI Bo, LIU Falin, ZHOU Chongbin, et al. Phase error correction for approximated observation-based compressed sensing radar imaging[J]. Sensors, 2017, 17(3): 613. doi: 10.3390/s17030613.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  242
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回