高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合可重构智能表面和人工噪声辅助的物理层安全通信

邓志祥 戴陈庆 张志威

邓志祥, 戴陈庆, 张志威. 混合可重构智能表面和人工噪声辅助的物理层安全通信[J]. 电子与信息学报, 2024, 46(8): 3155-3164. doi: 10.11999/JEIT231235
引用本文: 邓志祥, 戴陈庆, 张志威. 混合可重构智能表面和人工噪声辅助的物理层安全通信[J]. 电子与信息学报, 2024, 46(8): 3155-3164. doi: 10.11999/JEIT231235
DENG Zhixiang, DAI Chenqing, ZHANG Zhiwei. Physical Layer Security for Hybrid Reconfigurable Intelligent Surface and Artificial Noise Assisted Communication[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3155-3164. doi: 10.11999/JEIT231235
Citation: DENG Zhixiang, DAI Chenqing, ZHANG Zhiwei. Physical Layer Security for Hybrid Reconfigurable Intelligent Surface and Artificial Noise Assisted Communication[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3155-3164. doi: 10.11999/JEIT231235

混合可重构智能表面和人工噪声辅助的物理层安全通信

doi: 10.11999/JEIT231235
基金项目: 江苏省输配电装备技术重点实验室开放课题资助项目(2022JSSPD03)
详细信息
    作者简介:

    邓志祥:男,副教授,研究方向为无线物理层安全

    戴陈庆:女,硕士生,研究方向为无线物理层安全

    张志威:男,硕士生,研究方向为无线物理层安全

    通讯作者:

    邓志祥 dengzhixiang@hhu.edu.cn

  • 中图分类号: TN918.91

Physical Layer Security for Hybrid Reconfigurable Intelligent Surface and Artificial Noise Assisted Communication

Funds: Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology (2022JSSPD03)
  • 摘要: 针对可重构智能表面(Reconfigurable Intelligent Reflecting Surface, RIS)辅助的物理层安全通信,该文设计了基于混合有源-无源RIS和人工噪声(Artificial Noise, AN)辅助的安全传输方案。考虑基站和RIS的功率约束以及RIS无源反射元件的反射系数恒模约束,以最大化系统安全传输速率为目标,构建基站发射波束成形、AN波束向量、RIS反射系数矩阵联合优化问题。使用交替优化(Alternating Optimization, AO)、权值最小均方误差(Weighted Minimum Mean Square Error, WMMSE)和半定松弛(Semi-definite Relaxation, SDR)算法,求解所构建的变量高度耦合的非凸优化问题。仿真结果表明,混合RIS辅助安全传输方案,能够有效提高系统的安全速率,与无源RIS相比,能够有效克服“双衰落”效应导致的安全速率降低,与有源RIS相比,具有更高的能量效率。
  • 图  1  系统模型

    图  2  仿真系统模型坐标图

    图  3  收敛性能

    图  4  不同方案中安全速率与功率之间的关系

    图  5  不同方案中安全速率与距离位置的关系

    图  6  安全速率与混合RIS中有源元件个数的关系

    1  交替优化求解算法

     1:Initialize
     2:给定初始可行解$ {\boldsymbol{w}}^{0},\;{\boldsymbol{v}}^{0},\;{\boldsymbol{\varPhi}}^{\text{0}} $,设置迭代次数$ i $=0、收敛精度$ \delta $、初始辅助变量$ {{b}}_{\text{1}}^{\text{0}}=1,\;{{b}}_{\text{2}}^{\text{0}}=1,\;{{R}}^{0}=f\left({\boldsymbol{w}}^{0},\;{\boldsymbol{v}}^{0},\;{\boldsymbol{\varPhi}}^{\text{0}}\right) $
     3:repeat
     4: 给定$ {{\boldsymbol{\varPhi}}}^{i} $, $ {{b}}_{\text{1}}^{i} $, $ {{b}}_{\text{2}}^{i} $,根据3.2节所述方法求解问题(P2-2),并对得出的解进行处理,从而更新$ {\boldsymbol{w}}^{i+1}、{\boldsymbol{v}}^{i+1} $
     5: 给定$ {\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1} $, $ {{b}}_{\text{1}}^{i} $, $ {{b}}_{\text{2}}^{{i}} $根据3.3节所述方法求解问题(P3-2),对其解进行高斯随机化,得到近似解,进而更新$ {\boldsymbol{\varPhi}}^{i+1} $
     6: 给定$ {\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1} $, $ {\boldsymbol{\varPhi}}^{i+1} $,根据3.4节所述方法更新辅助变量$ {{b}}_{\text{1}}^{i+1} $, $ {{b}}_{\text{2}}^{i+1} $
     7: $ {{R}}^{i+1}=f\left({\boldsymbol{w}}^{i+1},\;{\boldsymbol{v}}^{i+1},\;{\boldsymbol{\varPhi}}^{i+1}\right) $
     8: $ i=i+1 $
     9:until $ \dfrac{{{R}}^{\boldsymbol{i}}-{{R}}^{\boldsymbol{i}-1}}{{{R}}^{\boldsymbol{i}}} < \delta $
    下载: 导出CSV
  • [1] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [2] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [3] DONG Lun, HAN Zhu, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875–1888. doi: 10.1109/TSP.2009.2038412.
    [4] BLOCH M, HAYASHI M, and THANGARAJ A. Error-control coding for physical-layer secrecy[J]. Proceedings of the IEEE, 2015, 103(10): 1725–1746. doi: 10.1109/JPROC.2015.2463678.
    [5] FANG Sisai, CHEN Gaojie, ABDULLAH Z, et al. Intelligent Omni surface-assisted secure MIMO communication networks with artificial noise[J]. IEEE Communications Letters, 2022, 26(6): 1231–1235. doi: 10.1109/LCOMM.2022.3159575.
    [6] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [7] CHEN Siyu, JI Yancheng, JIANG Yan, et al. Optimal RIS allocations for PLS with uncertain jammer and eavesdropper[J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 927–936. doi: 10.1109/TCE.2023.3292842.
    [8] ZHANG Zhe, ZHANG Chensi, JIANG Chengjun, et al. Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4451–4463. doi: 10.1109/TVT.2021.3068774.
    [9] YOU Li, XIONG Jiayuan, NG D W K, et al. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 1407–1421. doi: 10.1109/TSP.2020.3047474.
    [10] LI Guyue, HU Lei, STAAT P, et al. Reconfigurable intelligent surface for physical layer key generation: Constructive or destructive?[J]. IEEE Wireless Communications, 2022, 29(4): 146–153. doi: 10.1109/MWC.007.2100545.
    [11] LI Guyue, SUN Chen, XU Wei, et al. On maximizing the sum secret key rate for reconfigurable intelligent surface-assisted multiuser systems[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 211–225. doi: 10.1109/TIFS.2021.3138612.
    [12] LV Weigang, BAI Jiale, YAN Qingli, et al. RIS-assisted green secure communications: Active RIS or passive RIS?[J]. IEEE Wireless Communications Letters, 2023, 12(2): 237–241. doi: 10.1109/LWC.2022.3221609.
    [13] LONG Ruizhe, LIANG Yingchang, PEI Yiyang, et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962–4975. doi: 10.1109/TWC.2021.3064024.
    [14] KHOSHAFA M H, NGATCHED T M N, AHMED M H, et al. Active reconfigurable intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters, 2021, 25(11): 3699–3703. doi: 10.1109/LCOMM.2021.3110714.
    [15] DONG Limeng, WANG Huiming, and BAI Jiale. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2181–2186. doi: 10.1109/TVT.2021.3135498.
    [16] DONG Limeng and YAN Wanyu. Active reconfigurable intelligent surface (RIS) aided secure wireless transmission under a shared power source between transmitter and RIS[C]. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2022: 996–1000. doi: 10.1109/WCSP55476.2022.10039260.
    [17] ZHU Qi, LI Ming, LIU Rang, et al. Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9636–9640. doi: 10.1109/TVT.2023.3249752.
    [18] YANG Songjie, LYU Wanting, XIU Yue, et al. Active 3D double-RIS-aided multi-user communications: Two-timescale-based separate channel estimation via Bayesian learning[J]. IEEE Transactions on Communications, 2023, 71(6): 3605–3620. doi: 10.1109/TCOMM.2023.3265115.
    [19] NGUYEN N T, VU Q D, LEE K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6228–6244. doi: 10.1109/TVT.2022.3158686.
    [20] NGUYEN N T, NGUYEN V D, WU Qingqing, et al. Hybrid active-passive reconfigurable intelligent surface-assisted multi-user MISO systems[C]. 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Finland, 2022: 1–5. doi: 10.1109/SPAWC51304.2022.9833956.
    [21] SCHROEDER R, HE Jiguang, and JUNTTI M. Passive RIS vs. hybrid RIS: A comparative study on channel estimation[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9448802.
    [22] SCHROEDER R, HE Jiguang, BRANTE G, et al. Two-stage channel estimation for hybrid RIS assisted MIMO systems[J]. IEEE Transactions on Communications, 2022, 70(7): 4793–4806. doi: 10.1109/TCOMM.2022.3176654.
    [23] NGO K H, NGUYEN N T, DINH T Q, et al. Low-latency and secure computation offloading assisted by hybrid relay-reflecting intelligent surface[C]. 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2021: 306–311. doi: 10.1109/ATC52653.2021.9598322.
    [24] NGUYEN N T, VU Q D, LEE K, et al. Spectral efficiency optimization for hybrid relay-reflecting intelligent surface[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473487.
    [25] SHI Qingjiang, XU Weiqiang, WU Jinsong, et al. Secure beamforming for MIMO broadcasting with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2841–2853. doi: 10.1109/TWC.2015.2395414.
    [26] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [27] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  63
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-29
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回