高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征融合的窄带雷达短时观测回波序列空中目标识别

郭泽坤 刘峥 谢荣 冉磊 徐寒铮

郭泽坤, 刘峥, 谢荣, 冉磊, 徐寒铮. 基于特征融合的窄带雷达短时观测回波序列空中目标识别[J]. 电子与信息学报, 2024, 46(8): 3184-3192. doi: 10.11999/JEIT231232
引用本文: 郭泽坤, 刘峥, 谢荣, 冉磊, 徐寒铮. 基于特征融合的窄带雷达短时观测回波序列空中目标识别[J]. 电子与信息学报, 2024, 46(8): 3184-3192. doi: 10.11999/JEIT231232
GUO Zekun, LIU Zheng, XIE Rong, RAN Lei, XU Hanzheng. Airborne Target Recognition of Narrowband Radar Short Time Observation Echoes Based on Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3184-3192. doi: 10.11999/JEIT231232
Citation: GUO Zekun, LIU Zheng, XIE Rong, RAN Lei, XU Hanzheng. Airborne Target Recognition of Narrowband Radar Short Time Observation Echoes Based on Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3184-3192. doi: 10.11999/JEIT231232

基于特征融合的窄带雷达短时观测回波序列空中目标识别

doi: 10.11999/JEIT231232 cstr: 32379.14.JEIT231232
基金项目: 国家自然科学基金(62001346),雷达信号处理全国重点实验室支持计划项目(KGJ202205)
详细信息
    作者简介:

    郭泽坤:男,博士生,中国电子学会学生会员,研究方向为雷达自动目标识别、深度学习、小样本学习

    刘峥:男,教授,博士生导师,雷达信号处理全国重点实验室副主任,研究方向为雷达精确制导与多传感器信息融合

    谢荣:男,副教授,硕士生导师,研究方向为雷达精确制导技术、雷达智能抗干扰

    冉磊:男,副教授,硕士生导师,主要研究方向为高速高机动平台雷达成像、多通道阵列雷达成像

    徐寒铮:男,硕士生,研究方向为雷达目标识别FPGA系统设计与开发

    通讯作者:

    刘峥 lz@xidian.edu.cn

  • 中图分类号: TN959.1

Airborne Target Recognition of Narrowband Radar Short Time Observation Echoes Based on Feature Fusion

Funds: The National Natural Science Foundation of China (62001346), The Stabilization Support of National Key Laboratory of Radar Signal Processing (KGJ202205)
  • 摘要: 窄带雷达因其成本低、作用距离远的优点在防空制导领域有着广泛应用,随着高速机动平台的发展,传统的基于长时间观测回波序列特征建模的目标识别方法已不再适用。针对窄带雷达对短时间观测回波(OEST)序列特征识别能力较差,并且易受诱饵目标干扰,导致识别结果可靠性不高的问题,该文提出一种采用多特征自适应融合的窄带雷达OEST序列空中目标识别方法。首先,对编码层和分类层进行训练,通过构建通道-空间注意力模块,自适应地突出高可分性特征,然后,构建最大边缘正交损失函数,增大不同类别特征间距,缩小同类特征间距,并使类间特征正交,以此提升分类性能;最后,固定编码层与分类层参数,利用重构误差对解码层进行训练,确保模型具备对诱饵等库外目标的准确鉴别能力。实验部分在观测序列长度为100的条件下,分类准确率和鉴别率分别达到94.37%和96.78%,由此可得,所提方法能够有效提升窄带雷达的分类性能和对诱饵目标的鉴别能力,进而提高识别结果的可靠性。
  • 图  1  多特征自适应融合网络(MAF-Net)

    图  2  MAF-Net卷积模块和反卷积模块结构

    图  3  MAF-Net所输入通道-空间注意力模块结构

    图  4  MAF-Net两阶段训练及测试过程

    图  5  部分空中目标特征序列

    图  6  重构误差箱型图

    图  7  MAF-Net分类混淆矩阵

    图  8  交叉熵损失函数与最大边缘正交损失函数所训练模型t-SNE定性对比

    图  9  识别率随观测回波序列长度的变化曲线

    表  1  鉴别准确率对比

    方法鉴别准确率(%)
    SVDD78.03
    W-KNN76.81
    Deep-SVDD91.55
    TCNN82.76
    MAF-Net (Ours)96.78
    下载: 导出CSV

    表  2  分类准确率对比

    方法分类准确率(%)时间(s)
    SVM35.620.53
    CNN-SVM86.782.86
    CNN-KNN86.592.89
    LSTM90.163.31
    TCNN88.242.94
    MAF-Net (Ours)94.372.74
    下载: 导出CSV
  • [1] 梁复台, 李宏权, 刘安波, 等. 基于CNN的窄带雷达空中目标识别方法[J]. 火力与指挥控制, 2020, 45(6): 85–90. doi: 10.3969/j.issn.1002-0640.2020.06.016.

    LIANG Futai, LI Hongquan, LIU Anbo, et al. Research on aerial target recognition method for narrow-band radar based on CNN[J]. Fire Control & Command Control, 2020, 45(6): 85–90. doi: 10.3969/j.issn.1002-0640.2020.06.016.
    [2] CHEN V C, LI Fayin, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402.
    [3] 赵越, 陈之纯, 纠博, 等. 一种基于时频分析的窄带雷达飞机目标分类特征提取方法[J]. 电子与信息学报, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204.

    ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204.
    [4] 王颖. 窄带雷达空中目标识别技术研究[D]. [硕士论文], 西安电子科技大学, 2022. doi: 10.27389/d.cnki.gxadu.2022.002380.

    WANG Ying. Research on air target recognition technology of narrowband radar[D]. [Master dissertation], Xidian University, 2022. doi: 10.27389/d.cnki.gxadu.2022.002380.
    [5] 高瑞明, 李明星. 基于调制谱图卷积神经网络的空中目标识别技术[J]. 电光与控制, 2021, 28(2): 59–64. doi: 10.3969/j.issn.1671-637X.2021.02.012.

    GAO Ruiming and LI Mingxing. Aerial target recognition based on CNN processing of modulation spectrum graphs[J]. Electronics Optics & Control, 2021, 28(2): 59–64. doi: 10.3969/j.issn.1671-637X.2021.02.012.
    [6] 林青松, 胡卫东, 虞华, 等. 低分辨雷达回波序列轮廓像目标分类方法研究[J]. 现代雷达, 2005, 27(3): 24–28. doi: 10.16592/j.cnki.1004-7859.2005.03.008.

    LIN Qingsong, HU Weidong, YU Hua, et al. A study of target classification method based on low-resolution radar return sequences image profile[J]. Modern Radar, 2005, 27(3): 24–28. doi: 10.16592/j.cnki.1004-7859.2005.03.008.
    [7] 梁复台, 李宏权, 张晨浩. 基于深度迁移学习的窄带雷达群目标识别方法[J]. 兵器装备工程学报, 2020, 41(4): 143–147. doi: 10.11809/bqzbgcxb2020.04.028.

    LIANG Futai, LI Hongquan, and ZHANG Chenhao. Narrowband radar unresolved targets recognition method based on deep transfer learning[J]. Journal of Ordnance Equipment Engineering, 2020, 41(4): 143–147. doi: 10.11809/bqzbgcxb2020.04.028.
    [8] 狄方旭, 王小平, 林秦颖, 等. 雷达与红外数据融合的近距空中目标识别[J]. 电光与控制, 2014, 21(9): 54–57,75. doi: 10.3969/j.issn.1671-637X.2014.09.012.

    DI Fangxu, WANG Xiaoping, LIN Qinying, et al. Close aerial target recognition based on data fusion of radar and infrared sensor[J]. Electronics Optics & Control, 2014, 21(9): 54–57,75. doi: 10.3969/j.issn.1671-637X.2014.09.012.
    [9] 吴强, 姜礼平, 季傲. 基于模糊集和D-S证据理论的空中作战目标识别[J]. 指挥控制与仿真, 2015, 37(4): 54–58. doi: 10.3969/j.issn.1673-3819.2015.04.012.

    WU Qiang, JIANG Liping, and JI Ao. Aircraft target identification based on fuzzy sets and D-S evidence theory in air operation[J]. Command Control & Simulation, 2015, 37(4): 54–58. doi: 10.3969/j.issn.1673-3819.2015.04.012.
    [10] 魏文博, 蔡红军. 基于支持向量机的窄带雷达弹道导弹目标识别技术[J]. 电子科技, 2016, 29(6): 75–78. doi: 10.16180/j.cnki.issn1007-7820.2016.06.022.

    WEI Wenbo and CAI Hongjun. Narrowband radar ballistic missile target recognition technology based on SVM[J]. Electronic Science and Technology, 2016, 29(6): 75–78. doi: 10.16180/j.cnki.issn1007-7820.2016.06.022.
    [11] GAO Yong, ZHOU Yu, WANG Yan, et al. Narrowband radar automatic target recognition based on a hierarchical fusing network with multidomain features[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1039–1043. doi: 10.1109/LGRS.2020.2993039.
    [12] TIAN Xudong, BAI Xueru, and ZHOU Feng. Recognition of micro-motion space targets based on attention-augmented cross-modal feature fusion recognition network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5104909. doi: 10.1109/TGRS.2023.3275991.
    [13] WAN Jinwei, CHEN Bo, XU Bin, et al. Convolutional neural networks for radar HRRP target recognition and rejection[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 5. doi: 10.1186/s13634-019-0603-y.
    [14] 胡明春, 王建明, 孙俊, 等. 雷达目标识别原理与实验技术[M]. 北京: 国防工业出版社, 2017: 12–13.

    HU Mingchun, WANG Jianming, SUN Jun, et al. Principle and Experiments of Radar Target Recognition Technology[M]. Beijing: National Defense Industry Press, 2017: 12–13.
    [15] CHEN Jian, XU Shiyou, and CHEN Zengping. Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1268–1275. doi: 10.1049/iet-rsn.2018.5237.
    [16] CHEN Jian, XU Shiyou, HU Pengjiang, et al. Precession period extraction of axisymmetric space target from RCS sequence via convolutional neural network[C]. 2018 Progress in Electromagnetics Research Symposium (PIERS 2018), Toyama, Japan, 2018: 2077–2082. doi: 10.23919/PIERS.2018.8597685.
    [17] TAX D M J and DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/13): 1191–1199. doi: 10.1016/S0167-8655(99)00087-2.
    [18] TAX D M J and DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45–66. doi: 10.1023/B:MACH.0000008084.60811.49.
    [19] PARVIN H, ALIZADEH H, and MINAEI-BIDGOLI B. MKNN: Modified K-nearest neighbor[C]. The World Congress on Engineering and Computer Science 2008, San Francisco, USA, 2008.
    [20] RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4393–4402.
    [21] WIEDERER J, SCHMIDT J, KRESSEL U, et al. A benchmark for unsupervised anomaly detection in multi-agent trajectories[C]. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 130–137. doi: 10.1109/ITSC55140.2022.9922440.
    [22] LEE K, MAJI S, RAVICHANDRAN A, et al. Meta-learning with differentiable convex optimization[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10649–10657. doi: 10.1109/CVPR.2019.01091.
    [23] VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [24] KOBAK D and LINDERMAN G C. Initialization is critical for preserving global data structure in both t-SNE and UMAP[J]. Nature Biotechnology, 2021, 39(2): 156–157. doi: 10.1038/s41587-020-00809-z.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  163
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-03-13
  • 网络出版日期:  2024-03-25
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回