高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知辅助的低复杂度 SCMA系统优化设计

余礼苏 钟润 吕欣欣 王玉皞 王正海

余礼苏, 钟润, 吕欣欣, 王玉皞, 王正海. 压缩感知辅助的低复杂度 SCMA系统优化设计[J]. 电子与信息学报, 2024, 46(5): 2011-2017. doi: 10.11999/JEIT231226
引用本文: 余礼苏, 钟润, 吕欣欣, 王玉皞, 王正海. 压缩感知辅助的低复杂度 SCMA系统优化设计[J]. 电子与信息学报, 2024, 46(5): 2011-2017. doi: 10.11999/JEIT231226
YU Lisu, ZHONG Run, LU Xinxin, WANG Yuhao, WANG Zhenghai. Optimized Design of Low Complexity SCMA System Assisted by Compressed Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2011-2017. doi: 10.11999/JEIT231226
Citation: YU Lisu, ZHONG Run, LU Xinxin, WANG Yuhao, WANG Zhenghai. Optimized Design of Low Complexity SCMA System Assisted by Compressed Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2011-2017. doi: 10.11999/JEIT231226

压缩感知辅助的低复杂度 SCMA系统优化设计

doi: 10.11999/JEIT231226
基金项目: 国家自然科学基金(62161024, 62061030, 62161023),江西省主要学科学术和技术带头人省级人才项目(20232BCJ23085),江西省自然科学基金(20224BAB212002),中国博士后科学基金(2021TQ0136, 2022M711463),计算机体系结构国家重点实验室开放课题(CARCHB202019)
详细信息
    作者简介:

    余礼苏:男,副教授,硕士生导师,研究方向为6G、可见光通信、多址接入

    钟润:女,硕士生,研究方向为6G、可见光通信、多址接入

    吕欣欣:女,硕士生,研究方向为6G、可见光通信、多址接入

    王玉皞:男,教授,博士生导师,研究方向为6G、可见光通信、多址接入

    王正海:男,教授,硕士生导师,研究方向为6G、可见光通信、多址接入

    通讯作者:

    王玉皞 wangyuhao@ncu.edu.cn

  • 中图分类号: TN929.5

Optimized Design of Low Complexity SCMA System Assisted by Compressed Sensing

Funds: The National Natural Science Foundation of China (62161024, 62061030, 62161023), Jiangxi Provincial Talent Project for Academic and Technical Leaders of Major Disciplines (20232BCJ23085), Jiangxi Provincial Natural Science Foundation (20224BAB212002), China Postdoctoral Science Foundation (2021TQ0136, 2022M711463), The State Key Laboratory of Computer Architecture Project (CARCHB202019)
  • 摘要: 稀疏码多址接入(SCMA)技术是一项备受重视的基于码域的非正交多址接入(NOMA)技术。针对现有SCMA码本设计中未能结合数据和解码器性质以及MPA复杂度较高的问题,该文提出一种压缩感知辅助的低复杂度 SCMA系统优化设计方案。首先以系统误码率为优化目标,设计一种码本自更新方法用于实现低复杂度检测器,该方法在稀疏向量重构训练过程中使用梯度下降法实现码本的自更新。其次,设计一种压缩感知辅助的多用户检测算法:符号判决正交匹配追踪(SD-OMP)算法。通过在发射端对发射信号进行稀疏化处理,在接收端利用压缩感知技术对多用户的稀疏信号进行高效的检测和重构,达到减少用户间的冲突和降低系统复杂度的目的。仿真结果表明,在高斯信道条件下,压缩感知辅助的低复杂度 SCMA系统优化设计方案能够有效降低多用户检测的复杂度,且在系统用户部分活跃时能够表现出较好的误码率性能。
  • 图  1  部分活跃用户复用

    图  2  码本更新过程

    图  3  稀疏信号重构模型

    图  4  传统SCMA系统各码本性能对比图

    图  5  多用户检测算法仿真CCRR对比图

    图  6  部分用户活跃时检测算法性能仿真曲线

    表  1  自定义信号元素转换规则

    信号元素 列向量
    1 $ {\left[1,\mathrm{ }0\right]}^{\mathrm{T}} $
    2 $ {\left[0,\mathrm{ }1\right]}^{\mathrm{T}} $
    3 $ {\left[0,\mathrm{ }-1\right]}^{\mathrm{T}} $
    4 $ {\left[-1,\mathrm{ }0\right]}^{\mathrm{T}} $
    NULL $ {\left[0,\mathrm{ }0\right]}^{\mathrm{T}} $
    下载: 导出CSV

    1  SD-OMP算法流程

     输入:观测信号 $ \boldsymbol{y} $,观测矩阵 $ \boldsymbol{A} $,稀疏度 $ S $,门限值 $ {V}_{\mathrm{t}\mathrm{h}} $
     输出:估计的系数信号 $ \widehat{\boldsymbol{x}} $
     1.(初始化设置):迭代索引$ l=1 $,初始化支撑集
     $ {\varOmega }\left(l-1\right)=\varphi $,
     初始残差$ \boldsymbol{r}\left(l-1\right)=\boldsymbol{y} $;
     2.$ \rm{w}\rm{h}\rm{i}\rm{l}\rm{e}\;l\le S\;\rm{d}\rm{o}: $
     3.(相关性计算):$ {\varLambda }\left(l\right)=\mathrm{arg}\underset{i=\mathrm{1,2},\cdots ,K}{\mathrm{max}}{\left\|{\boldsymbol{A}}^{\mathrm{H}}\boldsymbol{r}(l-1)\right\|}_{2} $;
     4.(更新支撑集):$ {\varOmega }\left(l\right)={\varOmega }\left(l-1\right)\cup {\varLambda }\left(l\right) $;
     5.(最小二乘估计):$ \widehat x = {({A_{\varOmega (l)}})^\dagger }{\boldsymbol{y}} $
     6.(残差更新):$ \boldsymbol{r}\left(l\right)=\boldsymbol{y}-\boldsymbol{A}{\mathrm{sign}}\left({\widehat{\boldsymbol{x}}}^{\left(l\right)}\right) $;
     7.$ {\rm{i}\rm{f}\left\|\boldsymbol{r}\left(l\right)\right\|}_{2} < {V}_{\mathrm{t}\mathrm{h}} $
     8.$ \rm{break} $;
     9.$ \rm{end}\;\rm{while} $
     10.(输出估计的稀疏信号):$ \widehat{\boldsymbol{x}}={\mathrm{sign}}\left({\widehat{\boldsymbol{x}}}^{\left(L\right)}\right) $;
    下载: 导出CSV

    表  2  仿真参数设置

    参数名称参数值
    资源元素数K4
    码字数 M4
    用户数 J6
    样本数1280 bit
    MPA迭代次数3
    自更新迭代次数300
    下载: 导出CSV
  • [1] DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349.
    [2] BENJEBBOUR A, SAITO Y, KISHIYAMA Y H, et al. Concept and practical considerations of Non-Orthogonal Multiple Access (NOMA) for future radio access[C]. International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 2013: 770–774. doi: 10.1109/ISPACS.2013.6704653.
    [3] RIAZUL ISLAM S M, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116.
    [4] YANG Zheng, DING Zhiguo, FAN Pingzhi, et al. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7244–7257. doi: 10.1109/TWC.2016.2599521.
    [5] NIKOPOUR H and BALIGH H. Sparse code multiple access[C]. 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 2013: 332–336. doi: 10.1109/PIMRC.2013.6666156.
    [6] HOSHYAR R, WATHAN F P, and TAFAZOLLI R. Novel low-density signature for synchronous CDMA systems over AWGN channel[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1616–1626. doi: 10.1109/TSP.2007.909320.
    [7] YU Lisu, FAN Pingzhi, CAI Donghong, et al. Design and analysis of SCMA codebook based on star-QAM signaling constellations[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10543–10553. doi: 10.1109/TVT.2018.2865920.
    [8] CHEN Y M, HSU Y C, WU Mengchen, et al. On near-optimal codebook and receiver designs for MIMO-SCMA schemes[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10724–10738. doi: 10.1109/TWC.2022.3186973.
    [9] WEN Haifeng, LIU Zilong, LUO Qu, et al. Designing enhanced multidimensional constellations for code-domain NOMA[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2130–2134. doi: 10.1109/LWC.2022.3194604.
    [10] LUO Qu, LIU Zilong, CHEN Gaojie, et al. A design of low-projection SCMA codebooks for ultra-low decoding complexity in downlink IoT networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6608–6623. doi: 10.1109/TWC.2023.3244868.
    [11] LEI Tuofeng, NI Shuyan, CHENG Naiping, et al. A novel scheme for the construction of the SCMA codebook[J]. IEEE Access, 2022, 10: 100987–100998. doi: 10.1109/ACCESS.2022.3207898.
    [12] LUO Qu, LIU Zilong, CHEN Gaojie, et al. A novel multitask learning empowered codebook design for downlink SCMA networks[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1268–1272. doi: 10.1109/LWC.2022.3163810.
    [13] 雷菁, 王水琴, 黄巍, 等. 稀疏码多址接入多用户检测算法综述[J]. 电子与信息学报, 2021, 43(10): 2757–2770. doi: 10.11999/ JEIT210118.

    LEI Jing, WANG Shuiqin, HUANG Wei, et al. Survey of multi-user detection algorithms for sparse code multiple access system[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2757–2770. doi: 10.11999/JEIT210118.
    [14] GAO Pengyu, DU Yang, DONG Binhong, et al. Low-complexity CS-aided MPA detector for SCMA systems[J]. IEEE Communications Letters, 2018, 22(4): 784–787. doi: 10.1109/LCOMM.2017.2779859.
    [15] ZHAO Xiaoyan, WANG Cheng, CAI Songsong, et al. Low Complexity MPA Based on Dynamic Threshold and Stability Judgment for SCMA[C]. GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio De Janeiro, Brazil, 2022: 3302–3307. doi: 10.1109/GLOBECOM48099.2022.10001635.
    [16] 陈俊源. SCMA辅助可见光通信系统的码本与低复杂度接收机设计[D]. [硕士论文], 南昌大学, 2023. doi: 10.27232/d.cnki.gnchu.2023.003594.

    CHEN Junyuan. Codebook and low complexity receiver design for SCMA assisted visible light communication system[D]. [Master dissertation], Nanchang University, 2023. doi: 10.27232/d.cnki.gnchu.2023.003594.
    [17] Altera Innovation Asia website, Presentation 1st 5G algorithm innovation competition-ENV1. 0-SCMA[OL]. http://www.innov-ateasia.com/5g/en/gp2.html, 2017.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  180
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-31
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回