高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列SAR高分辨三维成像与点云聚类研究

姬昂 裴昊 张邦杰 徐刚

姬昂, 裴昊, 张邦杰, 徐刚. 阵列SAR高分辨三维成像与点云聚类研究[J]. 电子与信息学报, 2024, 46(5): 2087-2094. doi: 10.11999/JEIT231223
引用本文: 姬昂, 裴昊, 张邦杰, 徐刚. 阵列SAR高分辨三维成像与点云聚类研究[J]. 电子与信息学报, 2024, 46(5): 2087-2094. doi: 10.11999/JEIT231223
JI Ang, PEI Hao, ZHANG Bangjie, XU Gang. Research on High-resolution 3D Imaging and Point Cloud Clustering of Array SAR[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2087-2094. doi: 10.11999/JEIT231223
Citation: JI Ang, PEI Hao, ZHANG Bangjie, XU Gang. Research on High-resolution 3D Imaging and Point Cloud Clustering of Array SAR[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2087-2094. doi: 10.11999/JEIT231223

阵列SAR高分辨三维成像与点云聚类研究

doi: 10.11999/JEIT231223
基金项目: 国家自然科学基金(62071113),江苏省优秀青年基金(BK20211559)
详细信息
    作者简介:

    姬昂:男,博士生,研究方向为SAR 3维成像

    裴昊:男,博士生,研究方向为SAR图像解译

    张邦杰:男,博士生,研究方向为毫米波雷达系统和SAR成像等

    徐刚:男,教授,研究方向为SAR、ISAR和稀疏信号处理等

    通讯作者:

    徐刚 xugang0102@126.com

  • 中图分类号: TN957.52

Research on High-resolution 3D Imaging and Point Cloud Clustering of Array SAR

Funds: The National Natural Science Foundation of China (62071113), The Natural Science Foundation of Jiangsu Province (BK20211559)
  • 摘要: 相较于传统SAR 2维成像,SAR 3维成像技术能克服叠掩与几何失真等问题,因而具有广阔的应用前景。作为一种3维成像典型体制,阵列SAR高程维分辨率通常理论上受阵列孔径的限制,远低于距离和方位维分辨率。针对这一问题,该文通过引入邻域像素间高程的一致性假设,提出一种基于加权局域像素联合稀疏的压缩感知(CS)算法。然后利用K平均(K-means)和基于密度的空间聚类(DBSCAN)等典型聚类算法实现观测场景内特定目标(如建筑物与车辆)聚类分析。最后,实测数据实验验证了该文所提算法的有效性。
  • 图  1  机载阵列SAR 3维成像几何

    图  2  箱线图原理

    图  3  SAR 3维点云坐标的箱线图分析

    图  4  DBSCAN算法示意图

    图  5  阵列SAR 3维成像与点云聚类算法流程图

    图  6  运城试验场景光学图像

    图  7  运城试验场景某建筑不同算法的3维成像结果

    图  8  某建筑不同算法的2维密度投影结果

    图  9  不同聚类数下K-means算法的评估指标

    图  10  实验场景下不同聚类算法结果

    图  11  不同聚类数下GMM算法的评估指标

    表  1  运城实验场景的雷达系统参数

    参数数值
    带宽500 MHz
    阵列模式1发8收
    图像像素点数1 220×3 100
    (距离×方位)
    像素单元尺寸0.149 9 m×0.073 4 m
    (距离×方位)
    成像场景海拔高度595 m
    机载平台高度1 668 m
    下载: 导出CSV

    表  2  不同算法2维密度投影后图像熵对比

    算法图像熵
    Root-MUSIC0.564 2
    所提加权联合稀疏0.492 7
    下载: 导出CSV

    表  3  3种聚类算法的评估指标

    指标 K-means DBSCAN GMM
    时间(s) 7.2 36.4 19.5
    内存(MB) 50.9 13279.4 312.5
    SC 0.4432 0.4342 0.2548
    CHI 240276.4 195108.6 78216.9
    下载: 导出CSV
  • [1] ZHANG Bangjie, XU Gang, ZHOU Rui, et al. Multi-channel back-projection algorithm for mmWave automotive MIMO SAR imaging with Doppler-division multiplexing[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(2): 445–457. doi: 10.1109/JSTSP.2022.3207902.
    [2] ZHANG Bangjie, XU Gang, YU Hanwen, et al. Array 3-D SAR tomography using robust gridless compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5205013. doi: 10.1109/TGRS.2023.3259980.
    [3] 任烨仙, 徐丰. 若干层析SAR成像方法在解叠掩性能上的对比分析[J]. 雷达学报, 2022, 11(1): 71–82. doi: 10.12000/JR21139.

    REN Yexian and XU Feng. Comparative experiments on separation performance of overlapping scatterers with several tomography imaging methods[J]. Journal of Radars, 2022, 11(1): 71–82. doi: 10.12000/JR21139.
    [4] 周良将, 汪丙南, 王亚超, 等. 机载多维度SAR航空观测系统实验初步进展[J]. 电子与信息学报, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250.

    ZHOU Liangjiang, WANG Bingnan, WANG Yachao, et al. Preliminary process of airborne multidimensional space joint-observation SAR system[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1243–1253. doi: 10.11999/JEIT220250.
    [5] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
    [6] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183.
    [7] REN Yexian, XIAO Aoran, HU Fengming, et al. Coprime sensing for airborne array interferometric SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5229615. doi: 10.1109/TGRS.2022.3182980.
    [8] ZHU Xiaoxiang, GE Nan, and SHAHZAD M. Joint sparsity in SAR tomography for urban mapping[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1498–1509. doi: 10.1109/JSTSP.2015.2469646.
    [9] SHI Yilei, ZHU Xiaoxiang, and BAMLER R. Nonlocal compressive sensing-based SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3015–3024. doi: 10.1109/TGRS.2018.2879382.
    [10] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013.
    [11] 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. doi: 10.12000/JR17020.

    LI Hang, LIANG Xingdong, ZHANG Fubo, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630–639. doi: 10.12000/JR17020.
    [12] ERTIN E, AUSTIN C D, SHARMA S, et al. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 656802. doi: 10.1117/12.723245.
    [13] ZHU Xiaoxiang and SHAHZAD M. Facade reconstruction using Multiview spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. doi: 10.1109/TGRS.2013.2273619.
    [14] SHAHZAD M and ZHU Xiaoxiang. Automatic detection and reconstruction of 2-D/3-D building shapes from spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1292–1310. doi: 10.1109/TGRS.2015.2477429.
    [15] ZHANG Wei, WANG Ping, HE Ningyu, et al. Super resolution DOA based on relative motion for FMCW automotive radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8698–8709. doi: 10.1109/TVT.2020.2999640.
    [16] DANIEL J W. The conjugate gradient method for linear and nonlinear operator equations[J]. SIAM Journal on Numerical Analysis, 1967, 4(1): 10–26. doi: 10.1137/0704002.
    [17] LIU Zhiheng, ZHANG Wenjie, YU Hang, et al. Improved YOLOv5s for small ship detection with optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 8002205. doi: 10.1109/LGRS.2023.3319025.
    [18] LIU Wenxuan, JIN Taoyong, LI Jiancheng, et al. Adaptive clustering-based method for ICESat-2 sea ice retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4301814. doi: 10.1109/TGRS.2023.3287909.
    [19] ROUSSEEUW P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53–65. doi: 10.1016/0377-0427(87)90125-7.
    [20] CALIŃSKI T and HARABASZ J. A dendrite method for cluster analysis[J]. Communications in Statistics, 1974, 3(1): 1–27. doi: 10.1080/03610927408827101.
    [21] LIU Fan and DENG Yong. Determine the number of unknown targets in open world based on elbow method[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(5): 986–995. doi: 10.1109/TFUZZ.2020.2966182.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  228
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2024-02-10
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回