高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开关电容DC-DC转换器:从变压器模型到电路的演进

黄沫 陈中俊 夏添 杨在天

黄沫, 陈中俊, 夏添, 杨在天. 开关电容DC-DC转换器:从变压器模型到电路的演进[J]. 电子与信息学报, 2024, 46(5): 1888-1895. doi: 10.11999/JEIT231216
引用本文: 黄沫, 陈中俊, 夏添, 杨在天. 开关电容DC-DC转换器:从变压器模型到电路的演进[J]. 电子与信息学报, 2024, 46(5): 1888-1895. doi: 10.11999/JEIT231216
HUANG Mo, CHEN Zhongjun, XIA Tian, YANG Zaitian. Switched-Capacitor DC-DC Converter: Evolution from Transformer Model to Circuitry[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1888-1895. doi: 10.11999/JEIT231216
Citation: HUANG Mo, CHEN Zhongjun, XIA Tian, YANG Zaitian. Switched-Capacitor DC-DC Converter: Evolution from Transformer Model to Circuitry[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1888-1895. doi: 10.11999/JEIT231216

开关电容DC-DC转换器:从变压器模型到电路的演进

doi: 10.11999/JEIT231216
基金项目: 国家自然科学基金(61974046)
详细信息
    作者简介:

    黄沫:男,助理教授,研究方向为集成电路设计

    陈中俊:男,硕士生,研究方向为集成电路设计

    夏添:男,硕士生,研究方向为集成电路设计

    杨在天:男,硕士生,研究方向为集成电路设计

    通讯作者:

    黄沫 mohuang@um.edu.mo

  • 中图分类号: TN47

Switched-Capacitor DC-DC Converter: Evolution from Transformer Model to Circuitry

Funds: The National Natural Science Foundation of China (61974046)
  • 摘要: 开关电容(Switched Capacitor, SC) DC-DC转换器在很多领域有着广泛的应用。为应对大电压转换比(Voltage Conversion Ratio, VCR)的情况,前人提出了诸多拓扑结构。常用的拓扑结构包括Dickson,Cockcroft-Walton,Series-Parallel,Ladder,Fibonacci,Divider等等。这些拓扑结构有着各自的性能特点,适用于不同的场景。然而,对于这些不同的拓扑结构是如何产生的,本质的区别是什么,各自的优缺点是什么,并无直观的解释和分析。因此,该文从开关电容DC-DC转换器的等效变压器模型入手,分析了各个拓扑之间的本质区别,并展示了从等效模型到实际电路的演进过程,解释了规则和原因。
  • 图  1  2:1 开关电容电路基本工作原理

    图  2  由 SC 基本单元演化至 2:1 降压 SC DC-DC 的变压器模型

    图  3  4:1 Divider SC DC-DC 转换器

    图  4  3:1 Dickson SC DC-DC 转换器

    图  5  4:1 Dickson 与 4:1 CW SC DC-DC 转换器

    图  6  4:1 CW SC DC-DC 转换器从变压器模型到实际电路的演进过程

    图  7  3:1 S-P SC DC-DC 转换器

    图  8  3:1 Ladder SC DC-DC 转换器的变压器模型

    图  9  3:1 Ladder SC DC-DC 转换器的演进

    图  10  5:1 Fibonacci SC DC-DC 转换器

    图  11  5:1 Fibonacci SC DC-DC 转换器的另一种变压器模型

    图  12  常见降压型 SC 拓扑的 SSL 和 FSL 性能对比[6]

    表  1  常见降压型SC拓扑的开关和电容的耐压汇总

    结构 开关耐压 电容耐压 优缺点
    4:1 Divider VO, 1×VO 2×(2×VO), 1×VO SSL与FSL性能中等
    4:1 Dickson 3×(1×VO) VO, 2×VO, 1×VO SSL性能差
    FSL性能好
    4:1 CW 3×(1×VO) VO, 2×VO, 1×VO SSL性能差
    FSL性能好
    4:1 S-P VO, 2×VO, 1×VO 3×(1×VO) SSL性能差
    FSL性能好
    4:1 Ladder 3×(1×VO) 5×(1×VO) SSL性能差
    FSL性能好
    5:1 Fibonacci VO, 2×(1×VO) VO, 2×VO, 1×VO SSL与FSL性能中等
    下载: 导出CSV
  • [1] MEGAHED M and ANAND T. A sub-μW energy harvester architecture with reduced top/bottom plate switching loss achieving 80.66% peak efficiency in 180-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2023, 58(5): 1386–1399. doi: 10.1109/JSSC.2023.3241878.
    [2] WANG Yuanfei, HUANG Mo, LU Yan, et al. A continuously scalable-conversion-ratio SC converter with reconfigurable VCF step for high efficiency over an extended VCR range[C]. 2023 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2023: 450–451. doi: 10.1109/ISSCC42615.2023.10067756.
    [3] WANG Yuanfei, HUANG Mo, LUO Ping, et al. Adaptive maximum power point tracking with model-based negative feedback control and improved V–f model[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(9): 3103–3107. doi: 10.1109/TCSII.2021.3097825.
    [4] KI W H, SU Feng, and TSUI C Y. Charge redistribution loss consideration in optimal charge pump design[C]. 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 2005: 1895–1898. doi: 10.1109/ISCAS.2005.1464982.
    [5] LE H P, SANDERS S R, and ALON E. Design techniques for fully integrated switched-capacitor DC-DC converters[J]. IEEE Journal of Solid-State Circuits, 2011, 46(9): 2120–2131. doi: 10.1109/JSSC.2011.2159054.
    [6] SEEMAN M D and SANDERS S R. Analysis and optimization of switched-capacitor DC–DC converters[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 841–851. doi: 10.1109/TPEL.2007.915182.
    [7] DICKSON J F. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique[J]. IEEE Journal of Solid-State Circuits, 1976, 11(3): 374–378. doi: 10.1109/JSSC.1976.1050739.
    [8] REGINATO L L and SMITH B H. A 600-kV, 10-mA DC Cockcroft-Walton rectifier using silicon diodes at 100 kc[J]. IEEE Transactions on Nuclear Science, 1965, 12(3): 274–278. doi: 10.1109/TNS.1965.4323635.
    [9] MAKOWSKI M S. A canonical switched capacitor DC-DC converter[C]. 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), Santander, Spain, 2014: 1–8. doi: 10.1109/COMPEL.2014.6877113.
    [10] HARADA I, UENO F, INOUE T, et al. Characteristics analysis of Fibonacci type SC transformer[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1991, E75-A(6): 655–662.
    [11] BALLO A, GRASSO A D, and PALUMBO G. Comparison of the wide-frequency range dynamic behavior of the Dickson and Cockcroft-Walton voltage multipliers[C]. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, USA: IEEE, 2021: 348–351. doi: 10.1109/MWSCAS47672.2021.9531743.
    [12] ABDULSLAM A and MERCIER P P. A symmetric modified multilevel ladder PMIC for battery-connected applications[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 767–780. doi: 10.1109/JSSC.2019.2957658.
    [13] HU Tingxu, HUANG Mo, LU Yan, et al. 11.2 A 12V-to-1V quad-output switched-capacitor buck converter with shared DC capacitors achieving 90.4% peak efficiency and 48mA/mm3 power density at 85% efficiency[C]. 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2023: 184–186. doi: 10.1109/ISSCC42615.2023.10067463.
    [14] HU Tingxu, HUANG Mo, MARTINS R P, et al. A 12-to-1 V quad-output switched-capacitor buck converter with shared DC capacitors[J]. IEEE Journal of Solid-State Circuits, 2023, 58(12): 3492–3502. doi: 10.1109/JSSC.2023.3301068.
    [15] https://en.wikipedia.org/wiki/Fibonacci_sequence.
    [16] HUANG Mo, LU Yan, and MARTINS R P. 11.5 A 2-phase soft-charging hybrid boost converter with doubled-switching pulse width and shared bootstrap capacitor achieving 93.5% efficiency at a conversion ratio of 4.5[C]. 2020 IEEE International Solid- State Circuits Conference - (ISSCC), Francisco, USA, 2020: 198–200. doi: 10.1109/ISSCC19947.2020.9062902.
    [17] HUANG Mo, LU Yan, HU Tingxu, et al. A hybrid boost converter with cross-connected flying capacitors[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2102–2112. doi: 10.1109/JSSC.2020.3044062.
    [18] HU Tingxu, HUANG Mo, LU Yan, et al. A 4A 12-to-1 flying capacitor cross-connected DC-DC converter with inserted D > 0.5 control achieving > 2x transient inductor current slew rate and 0.73× theoretical minimum output undershoot of DSD[C]. 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, USA, 2022: 302–303. doi: 10.1109/ISSCC42614.2022.9731669.
    [19] HU Tingxu, HUANG Mo, MARTINS R P, et al. A 12-to-1 flying capacitor cross-connected buck converter with inserted D > 0.5 control for fast transient response[J]. IEEE Journal of Solid-State Circuits, 2023, 58(11): 3207–3218. doi: 10.1109/JSSC.2023.3297111.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  737
  • HTML全文浏览量:  358
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回