高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波波段涡旋波束的多模式集成与动态调控研究进展

袁乐眙 杨德生 刘云飞 张狂

袁乐眙, 杨德生, 刘云飞, 张狂. 微波波段涡旋波束的多模式集成与动态调控研究进展[J]. 电子与信息学报, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211
引用本文: 袁乐眙, 杨德生, 刘云飞, 张狂. 微波波段涡旋波束的多模式集成与动态调控研究进展[J]. 电子与信息学报, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211
YUAN Yueyi, YANG Desheng, LIU Yunfei, ZHANG Kuang. Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211
Citation: YUAN Yueyi, YANG Desheng, LIU Yunfei, ZHANG Kuang. Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1865-1873. doi: 10.11999/JEIT231211

微波波段涡旋波束的多模式集成与动态调控研究进展

doi: 10.11999/JEIT231211
基金项目: 国家自然科学基金(62171165, 6230011745),中国博士后面上基金(2022M710944),黑龙江省博士后基金(LBH-Z22017)
详细信息
    作者简介:

    袁乐眙:女,博士,讲师,研究方向为人工电磁媒质、涡旋波束的高阶模式集成、微波段超构透镜等

    杨德生:男,博士生,研究方向为OAM高纯度激发、OAM通信链路及系统设计等

    刘云飞:男,博士生,研究方向为可重构超表面器件、微波波束赋形技术等

    张狂:男,博士,教授,研究方向为超构表面、电磁场与微波、天线的设计与研究等

    通讯作者:

    张狂 zhangkuang@hit.edu.cn

  • 中图分类号: TN919.8

Research Progress in Multi-Mode Integration and Dynamic Regulation of Microwave Band Vortex Beams

Funds: The National Natural Science Foundation of China (62171165, 6230011745), China Postdoctoral Science Foundation (2022M710944), Postdoctoral Fellowships in Heilongjiang Province (LBH-Z22017)
  • 摘要: 该文回顾并总结了近期关于涡旋波束多模式集成与动态调控的研究成果与进展。首先从无源超表面透镜出发,利用传播相位与几何相位的综合调控作用,在单一超表面平台上实现了分数模涡旋波束的高纯度激发。更进一步,基于无源式超表面的多模式涡旋集成理论及方法,通过在超表面单元结构中加载变容二极管等有源可调谐式器件,实现涡旋波束的动态切换与人工调控。并在此基础上,对基于超表面的涡旋通信系统实现信道建模,并对涡旋通信系统的性能做出了理论分析与评估,为提高现代通信系统信道容量及信息传输速率打下理论基础。
  • 图  1  多层级联超表面单元结构[13]

    图  2  超构透镜的加工样品实物照片

    图  3  分数模式涡旋波束在xoy平面内的能量分布、电场分布和相位分布

    图  4  分数OAM模式的纯度分析

    图  5  超表面单元结构

    图  6  超表面单元特性

    图  7  不同模态下的远场方向图

    图  8  不同模态下的纯度

    图  9  不同模态下的远场测试方向图及近场相位分布

    图  10  涡旋通信的整体架构

    图  11  跳模通信的通信性能

    图  12  OAM通信的在AWGN信道下的通信性能

    图  13  纯度为0.6时的OAM通信性能

    表  1  选取超表面单元具体参数

    序号变容二极管对应电容值(pF)离散相位(°)连续相位取值范围(°)
    10.0200~90
    20.099090~180
    30.12180180~270
    40.17270270~360
    下载: 导出CSV

    表  2  该文研究工作与相关研究工作对比表

    天线数馈电网络OAM模式数OAM纯度(平均)带宽(%)是否可调
    UCA[3]810.89不可调
    SPP[5]11(无数据)0.3不可调
    Metasurface[10]110.8210不可调
    RIS (该文)1任意模式>0.7510任意可调
    下载: 导出CSV
  • [1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [2] GNAUCK A H, WINZER P J, CHANDRASEKHAR S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2011, 29(4): 373–377. doi: 10.1109/JLT.2010.2080259.
    [3] HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431.
    [4] ENGHETA N. Antenna-guided light[J]. Science, 2011, 334(6054): 317–318. doi: 10.1126/science.1213278.
    [5] MODUGU Y B, RAO M V, MONDAL D, et al. Generation of OAM beam by a Uniform Circular Array with triangular patches[C]. Proceedings of 2022 IEEE Wireless Antenna and Microwave Symposium, Rourkela, India, 2022: 1–3. doi: 10.1109/WAMS54719.2022.9848408.
    [6] ZHANG Qunhao, CHEN Wan, SUN Haifeng, et al. A circular-polarized vortex beams generation with orbital angular momentum based on a leaky-wave antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(6): 1311–1315. doi: 10.1109/LAWP.2023.3241248.
    [7] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713.
    [8] AHMED H, KIM H, ZHANG Yuebian, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941–956. doi: 10.1515/nanoph-2021-0746.
    [9] ISHFAQ M, LI Xiuping, QI Zihang, et al. A transmissive metasurface generating wideband OAM vortex beam in the Ka-band[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 2007–2011. doi: 10.1109/LAWP.2023.3271675.
    [10] ZHONG Tiegang, ZHANG Haoran, and NAN Jingchang. Generation of broadband high-modal and high-purity OAM using P-B phase metasurface[C]. Proceedings of 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, Guangzhou, China, 2022: 1–3. doi: 10.1109/IMWS-AMP54652.2022.10107237.
    [11] BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833.
    [12] EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142.
    [13] ZHANG Chao and JIANG Xuefeng. Secure high-speed spread spectrum transmission system with orbital angular momentum[J]. IET Communications, 2020, 14(11): 1709–1717. doi: 10.1049/iet-com.2019.0976.
    [14] LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214.
    [15] ZHANG Kuang, WANG Yuxiang, BUROKUR S N, et al. Generating dual-polarized vortex beam by detour phase: From phase gradient metasurfaces to metagratings[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 200–209. doi: 10.1109/TMTT.2021.3075251.
    [16] TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi: 10.1002/adfm.202203120.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  81
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回