Broadband High-Efficiency Continuous Inverse Class-F Power Amplifier Based on Input Harmonic Phase Control
-
摘要: 卫星通信与地面移动通信的互补融合已成为趋势,这意味着以功率放大器(功放)为核心的无线射频前端需要应对大带宽和高效率的双重挑战。该文提出的输入谐波相位控制方法可以有效突破功放带宽和效率相互制约的瓶颈,并以连续逆F类工作模式为基础,通过控制输入端二次谐波相位来重构晶体管漏极时域波形,在保证高效率的同时获得阻抗设计空间的大幅提升。利用这一拓展的阻抗设计空间,研制了一款1.7~3.0 GHz的连续逆F类功放,实测结果表明在该工作频段内可以实现40.62~42.78 dBm的输出功率和72.2%~78.6%的漏极效率,同时增益可达10.6~14.8 dB。Abstract: The integration of satellite communication and ground mobile communication in a complementary manner has emerged as a prevailing trend, which means the wireless radio frequency front-end with Power Amplifier (PA) as the core need to tackle the dual challenges of high efficiency and large bandwidth. In this paper, the proposed input harmonic phase control method effectively overcomes the bottleneck of mutual restriction between bandwidth and efficiency. By employing a continuous inverse Class-F operating mode, it enables the reconstruction of transistor drain waveform through precise control of the input second harmonic phase. This approach ensures high efficiency, while significantly enhancing the impedance design space. Based on the expanded design space, a continuous inverse Class-F PA is designed and fabricated over the frequency band of 1.7~3.0 GHz. Experimental results demonstrate an output power of 40.62~42.78 dBm, accompanied by a drain efficiency ranging from 72.2% to 78.6%. Additionally, the gain of the designed PA ranges from 10.6 dB to 14.8 dB.
-
表 1 功放性能对比
文献 工作模式 频率(GHz) DE(%) Gain(dB) Pout(dBm) 年份 文献[8] 混合逆连续类 2.4~3.9 62.2~74.7 10.7~12.5 39.6~41.4 2016 文献[11] 连续逆F类 1.35~2.35 71~82 / 40.1~41.5 2020 文献[12] 混合逆连续类 2.0~3.0 67.5~77.8 10.2~12.4 40.2~42.4 2023 文献[13] 混合连续类 1.6~2.8 61.2~72.4 11.1~14.9 40.4~42.3 2022 文献[16] 连续逆F类 3.05~3.85 70~78 11~12.4 39.9~41.4 2021 本文 连续逆F类 1.7~3.0 72.2~8.6 10.6~14.8 40.6~42.8 2023 -
[1] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363. [2] 代志江, 孔淑曼, 李明玉, 等. 基于改进的稀疏最小二乘双子支撑向量回归的数字预失真技术[J]. 电子与信息学报, 2023, 45(2): 418–426. doi: 10.11999/JEIT220372.DAI Zhijiang, KONG Shuman, LI Mingyu, et al. A digital predistortion technique based on improved sparse least squares twin support vector regression[J]. Journal of Electronics & Information Technology, 2023, 45(2): 418–426. doi: 10.11999/JEIT220372. [3] CRIPPS S C, TASKER P J, CLARKE A L, et al. On the continuity of high efficiency modes in linear RF power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(10): 665–667. doi: 10.1109/LMWC.2009.2029754. [4] CARRUBBA V, CLARKE A L, AKMAL M, et al. The continuous class-F mode power amplifier[C]. The 40th European Microwave Conference, Paris, France, 2010: 1674–1677. doi: 10.23919/EUMC.2010.5616309. [5] CARRUBBA V, BELL J J, SMITH R M, et al. Inverse class-FJ: Experimental validation of a new PA voltage waveform family[C]. Asia-Pacific Microwave Conference 2011, Melbourne, Australia, 2011: 1254–1257. [6] LIU Wang, LIU Qiang, DU Guangxing, et al. Dual-band high-efficiency power amplifier based on a series of inverse continuous modes with second-harmonic control[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(8): 1199–1202. doi: 10.1109/LMWT.2023.3271903. [7] DONG Yezi, MAO Luhong, and XIE Sheng. Extended continuous inverse class-F power amplifiers with class-AB bias conditions[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 368–370. doi: 10.1109/LMWC.2017.2678433. [8] SHI Weimin, HE Songbai, and LI Qirong. A series of inverse continuous modes for designing broadband power amplifiers[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(7): 525–527. doi: 10.1109/LMWC.2016.2574820. [9] PANG Jingzhou, HE Songbai, HUANG Chaoyi, et al. A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 137–139. doi: 10.1109/LMWC.2016.2517334. [10] HUANG Chaoyi, HE Songbai, SHI Weimin, et al. Design of broadband high-efficiency power amplifiers based on the hybrid continuous modes with phase shift parameter[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(2): 159–161. doi: 10.1109/LMWC.2017.2787061. [11] WANG Tao, CHENG Zhiqun, LIU Guohua, et al. Highly efficient broadband continuous inverse class-F power amplifier using multistage second harmonic control output matching network[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(5): e22162. doi: 10.1002/mmce.22162. [12] SONG Kaijun, HE Aoke, and LI Qian. Hybrid continuous inverse class-F high-efficiency power amplifier based on phase shift analysis[J]. Microwave and Optical Technology Letters, 2023, 65(2): 567–572. doi: 10.1002/mop.33544. [13] SHEN Ce, HE Songbai, XIAO Zehua, et al. High-efficiency hybrid continuous mode power amplifier with input and output harmonic engineering[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32(4): e23035. doi: 10.1002/mmce.23035. [14] SHARMA T, SRINIDHI E R, DARRAJI R, et al. High-efficiency input and output harmonically engineered power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 1002–1014. doi: 10.1109/TMTT.2017.2756046. [15] DHAR S K, SHARMA T, DARRAJI R, et al. Investigation of input–output waveform engineered continuous inverse class F power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3547–3561. doi: 10.1109/TMTT.2019.2923187. [16] ESKANDARI S, ZHAO Yulong, HELAOUI M, et al. Continuous-mode inverse class-GF power amplifier with second-harmonic impedance optimization at device input[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(5): 2506–2518. doi: 10.1109/TMTT.2021.3065130. [17] TASKER P J and BENEDIKT J. Waveform inspired models and the harmonic balance emulator[J]. IEEE Microwave Magazine, 2011, 12(2): 38–54. doi: 10.1109/MMM.2010.940101.