高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空地一体化网络服务连续性保障的低功耗通信与控制联合优化方法

蔡自伟 盛敏 刘俊宇 赵晨曦 李建东

蔡自伟, 盛敏, 刘俊宇, 赵晨曦, 李建东. 空地一体化网络服务连续性保障的低功耗通信与控制联合优化方法[J]. 电子与信息学报, 2024, 46(5): 1920-1930. doi: 10.11999/JEIT231192
引用本文: 蔡自伟, 盛敏, 刘俊宇, 赵晨曦, 李建东. 空地一体化网络服务连续性保障的低功耗通信与控制联合优化方法[J]. 电子与信息学报, 2024, 46(5): 1920-1930. doi: 10.11999/JEIT231192
CAI Ziwei, SHENG Min, LIU Junyu, ZHAO Chenxi, LI Jiandong. Low-power Communication and Control Joint Optimization for Service Continuity Assurance in Aerial-Ground Integrated Networks[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1920-1930. doi: 10.11999/JEIT231192
Citation: CAI Ziwei, SHENG Min, LIU Junyu, ZHAO Chenxi, LI Jiandong. Low-power Communication and Control Joint Optimization for Service Continuity Assurance in Aerial-Ground Integrated Networks[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1920-1930. doi: 10.11999/JEIT231192

空地一体化网络服务连续性保障的低功耗通信与控制联合优化方法

doi: 10.11999/JEIT231192
基金项目: 国家重点研发计划(2022YFB2902300),国家自然科学基金(62121001, 62341111, 62171344),陕西省重点产业创新链项目(2022ZDLGY05-01, 2022ZDLGY05-06),鹏城实验室重点项目(PCL2021A15)
详细信息
    作者简介:

    蔡自伟:男,博士生,研究方向为空地一体化网络、低能耗移动通信网络

    盛敏:女,博士,教授,研究方向为空天地一体化网络、智能无线网络、移动自组织网络

    刘俊宇:男,博士,教授,研究方向为超密无线网络、空地一体化网络、低能耗移动通信网络

    赵晨曦:男,博士,副教授,研究方向为6G无线网络、空地一体化网络、低能耗移动通信网络

    李建东:男,博士,教授,研究方向为宽带无线通信、认知无线网络、大规模自组织网络

    通讯作者:

    盛敏 msheng@mail.xidian.edu.cn

  • 中图分类号: TN929.5

Low-power Communication and Control Joint Optimization for Service Continuity Assurance in Aerial-Ground Integrated Networks

Funds: The National Key Research and Development Program of China (2022YFB2902300), The National Natural Science Foundation of China (62121001, 62341111, 62171344), The Key lndustry Innovation China of Shaanxi (2022ZDLGY05-01, 2022ZDLGY05-6), The Major Key Project of PengCheng Laboratory(PCL) (PCL2021A15)
  • 摘要: 空地一体化网络(AGIN)充分利用了空中基站(ABSs)灵活部署的特点,为热点地区提供了按需覆盖与高质量服务。然而,空中基站的高动态性使得网络的服务连续性难以保障。而且,空中基站能量受限,提升服务连续性和降低功耗通常又对应不同的飞行动作,因此,低功耗的服务连续性保障尤为困难。针对上述问题,该文基于联邦深度强化学习(FDRL)提出了一种面向低功耗服务连续性保障的通信与控制联合优化方法。所提方法通过联合优化空中基站的移动控制、用户关联和功率分配来保障网络服务的连续性。针对空中基站的高动态性,通过在所提方法中设计了环境状态经验池来利用信道的时空相关性,并在奖励函数中引入速率方差来保障网络服务连续性。考虑到不同飞行动作的功耗差异,所提方法通过优化空中基站的飞行动作来降低网络功耗。仿真结果说明,该文所提算法在满足用户速率需求和速率方差需求的前提下,能够减小网络功耗,并且所提联邦深度强化学习的性能接近中心式强化学习的性能。
  • 图  1  空地一体化网络系统模型图

    图  2  空中基站的通信与控制联合优化算法框图

    图  3  联邦深度强化学习的收敛性能

    图  4  网络吞吐量和网络功耗随用户速率需求的变化趋势

    图  5  用户速率方差与网络功耗随空中基站数量的变化趋势

    图  6  实际速率方差和网络功耗随速率方差门限的变化趋势

    1  均值聚类关联算法

     输入:ABS位置$ \{ ({x_m},{y_m},{z_m}),m \in [1,M]\} $,用户位置
     $\{ ({x_k},{y_k},0),k \in [1,K]\} $,ABS数量$M$,用户数量$K$,聚类
     迭代次数$I$
     (1) 随机选择$M$个用户作为$M$簇的簇心,它是所有用户位置的
     子集
     (2) ${\text{for }}i = 1,2, \cdots ,I{\text{ do}}$
     (3)  ${\text{for }}k = 1,2, \cdots ,K{\text{ do}}$
     (4)   计算用户$k$与每个簇心的距离
     (5)   把用户划分到距离最小的簇内
     (6)   重新计算每个簇的簇心
     (7)  ${\text{end for}}$
     (8)  如果簇心不再变化,提前结束聚类过程
     (9)) ${\text{end for}}$
     (10) 得到用户簇和对应的簇心
     (11) ${\text{for }}m = 1,2, \cdots ,M{\text{ do}}$:
     (12)  计算空中基站$m$与每个簇心的距离,并将距离存储在距
         离数组中
     (13) 找到距离最小的用户簇,并将$m$与其关联
     (14)  在空中基站$m$的$R$个子信道集合中按顺序选择子信道,
         记录到用户关联列表中
     (15) 标记已经选择基站的用户簇,使其不能与其他基站关联
     (16) ${\text{end for}}$
     (17) 输出用户关联列表
    下载: 导出CSV

    2  联邦深度强化学习算法

     输入:聚合间隔$G$,折扣因子$\gamma $,学习率$ \kappa $,探索因子$\varepsilon $,智能体的数量$M$,用于训练的幕数$E$,单幕的时隙数$T$
     (1) 初始化环境参数,包含ABS和用户的位置,以及信道增益
     (2) 给每一个智能体和全局模型设置初始化的深度神经网络参数
     (3) ${\text{for }}i = 1,2, \cdots ,E{\text{ do}}$
     (4)  ${\text{for }}t = 1,2, \cdots ,T{\text{ do}}$
     (5)   ${\text{for }}m = 1,2, \cdots ,M{\text{ do}}$
     (6)    步骤1:从聚合服务器获取全局的模型参数${\theta ^g}$,初始化智能体$m$的神经网络
     (7)    步骤2:从网络环境中获取状态参数$s(t)$
     (8)    步骤3:根据$\varepsilon $和式(15)选择动作$a(t)$
     (9)    步骤4:执行动作$a(t)$,获得下一个状态$s(t + 1)$和$R(t)$
     (10)    步骤5:把$a(t)$, $s(t)$, $s(t + 1)$, $R(t)$记录到环境信息经验池中
     (11)    步骤6:当采样数满足训练要求时,从环境信息经验池中选择样本训练深度神经网络训练模型${\theta _m}$,否者返回
     (12)   ${\text{end for}}$
     (13)   ${\text{if }}(t\% G = = 0)$
     (14)    $M$个智能体传输深度神经网络参数到TBS,执行FedAvg聚合,把聚合后的模型传输给各个智能体分布式执行
     (15)   ${\text{end if}}$
     (16) ${\text{end for}}$
     (17) ${\text{end for}}$
     (18) 输出ABS移动控制和功率分配的动作
    下载: 导出CSV
  • [1] LYU Jiangbin, ZENG Yong, and ZHANG Rui. UAV-aided offloading for cellular hotspot[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3988–4001. doi: 10.1109/TWC.2018.2818734.
    [2] MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862.
    [3] JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2022, 35(9): 19–34. doi: 10.1016/j.cja.2021.04.025.
    [4] LI Yang, ZHANG Heli, JI Hong, et al. UAV-assisted cellular communication: Joint trajectory and coverage optimization[C]. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 2021: 1–6. doi: 10.1109/WCNC49053.2021.9417264.
    [5] NGUYEN M D, LE L B, and GIRARD A. Integrated UAV trajectory control and resource allocation for UAV-based wireless networks with Co-channel interference management[J]. IEEE Internet of Things Journal, 2022, 9(14): 12754–12769. doi: 10.1109/JIOT.2021.3138374.
    [6] ZHOU Shiyang, CHENG Yufang, LEI Xia, et al. Resource allocation in UAV-assisted networks: A clustering-aided reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 12088–12103. doi: 10.1109/TVT.2022.3189552.
    [7] XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications, 2021, 28(5): 50–58. doi: 10.1109/MWC.211.2100048.
    [8] LI Jiandong, ZHOU Chengyi, LIU Junyu, et al. Reinforcement learning based resource allocation for coverage continuity in high dynamic UAV communication networks[J]. IEEE Transactions on Wireless Communications, 2023. doi: 10.1109/TWC.2023.3282909.
    [9] ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328.
    [10] ZENG Fanzi, HU Zhenzhen, XIAO Zhu, et al. Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7634–7647. doi: 10.1109/TVT.2020.2986776.
    [11] LI Yabo, ZHANG Haijun, LONG Keping, et al. Joint resource allocation and trajectory optimization with QoS in NOMA UAV networks[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–5. doi: 10.1109/GLOBECOM42002.2020.9322351.
    [12] CUI Yuling, DENG Danhao, WANG Chaowei, et al. Joint trajectory and power optimization for energy efficient UAV communication using deep reinforcement learning[C]. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484490.
    [13] LIU C H, CHEN Zheyu, TANG Jian, et al. Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2059–2070. doi: 10.1109/JSAC.2018.2864373.
    [14] ARANI A H, AZARI M M, HU Peng, et al. Reinforcement learning for energy-efficient trajectory design of UAVs[J]. IEEE Internet of Things Journal, 2022, 9(11): 9060–9070. doi: 10.1109/JIOT.2021.3118322.
    [15] GALKIN B, OMONIWA B, and DUSPARIC I. Multi-agent deep reinforcement learning for optimising energy efficiency of fixed-wing UAV cellular access points[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, 2022: 1–6. doi: 10.1109/ICC45855.2022.9838809.
    [16] KAKARLA N B and MAHENDRAN V. Lyapunov meets thompson: Learning-based energy-efficient UAV communication with queuing stability constraints[C]. IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hoboken, USA, 2023: 1–7. doi: 10.1109/INFOCOMWKSHPS57453.2023.10225765.
    [17] SUN Yan, XU Dongfang, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281–4298. doi: 10.1109/TCOMM.2019.2900630.
    [18] WANG Ningyuan, LI Feng, CHEN Dong, et al. NOMA-based energy-efficiency optimization for UAV enabled space-air-ground integrated relay networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4129–4141. doi: 10.1109/TVT.2022.3151369.
    [19] LUONG P, GAGNON F, TRAN L N, et al. Deep reinforcement learning-based resource allocation in cooperative UAV-assisted wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7610–7625. doi: 10.1109/TWC.2021.3086503.
    [20] DE SENA A S, LIMA F R M, DA COSTA D B, et al. Massive MIMO-NOMA networks with imperfect SIC: Design and fairness enhancement[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 6100–6115. doi: 10.1109/TWC.2020.3000192.
    [21] FIORANI M, TOMBAZ S, FARIAS F S, et al. Joint design of radio and transport for green residential access networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(4): 812–822. doi: 10.1109/JSAC.2016.2544599.
    [22] WEI Xizixiang and SHEN Cong. Federated learning over noisy channels: Convergence analysis and design examples[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(2): 1253–1268. doi: 10.1109/TCCN.2022.3140788.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  251
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-07
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回