高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有源智能反射面反射单元分组的反射调制系统

熊军洲 李国权 王钥涛 林金朝

熊军洲, 李国权, 王钥涛, 林金朝. 基于有源智能反射面反射单元分组的反射调制系统[J]. 电子与信息学报. doi: 10.11999/JEIT231187
引用本文: 熊军洲, 李国权, 王钥涛, 林金朝. 基于有源智能反射面反射单元分组的反射调制系统[J]. 电子与信息学报. doi: 10.11999/JEIT231187
XIONG Junzhou, LI Guoquan, WANG Yuetao, LIN Jinzhao. A Reflection Modulation System Based on Reflecting Element Grouping of Active Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231187
Citation: XIONG Junzhou, LI Guoquan, WANG Yuetao, LIN Jinzhao. A Reflection Modulation System Based on Reflecting Element Grouping of Active Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231187

基于有源智能反射面反射单元分组的反射调制系统

doi: 10.11999/JEIT231187
基金项目: 国家自然科学基金(U21A20447),重庆市自然科学基金创新群体科学基金(cstc2020jcyj-cxttX0002)
详细信息
    作者简介:

    熊军洲:男,博士生,研究方向为智能反射面、索引调制技术等

    李国权:男,教授,博士生导师,研究方向为5G/6G通信、智能反射面等

    王钥涛:男,硕士生,研究方向为智能反射面、索引调制技术等

    林金朝:男,教授,博士生导师,研究方向为无线传输技术、BAN网络与信道处理技术等

    通讯作者:

    李国权 ligq@cqupt.edu.cn

  • 中图分类号: TN92

A Reflection Modulation System Based on Reflecting Element Grouping of Active Intelligent Reflecting Surface

Funds: The National Natural Science Foundation of China (U21A20447), The Foundation for Innovative Research Groups of the Natural Science Foundation of Chongqing (cstc2020jcyj-cxttX0002)
  • 摘要: 为克服智能反射面(IRS)辅助通信系统的“双重路径损耗”,进一步提升系统的可靠性和频谱效率,该文提出一种基于有源IRS反射单元分组的反射调制(RM)系统方案,利用有源反射单元分组的数量来传输额外信息。然后基于矩母函数推导了最大似然检测算法下基站发射符号与有源反射单元分组数量的平均成对错误概率,获取到系统的理论比特错误概率(BEP)上界以及可达速率。仿真结果验证了理论推导的准确性,同时表明所提方案具有更优的误码性能和频谱效率。
  • 图  1  系统模型

    图  2  不同RE数量下的BER性能

    图  3  不同方案的BER性能

    图  4  不同的RE分组数量和BS调制阶数下的BER性能

    图  5  存在信道相位估计误差时的BER性能

    图  6  不同方案的可达速率对比

    表  1  $ N = 6 $, $ L = 3 $时基于RE分组的RM比特映射关系

    IRS传输的信息位
    00 01 10 11
    有源分组数量$ l $ 0 1 2 3
    IRS反射状态
    下载: 导出CSV
  • [1] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
    [2] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [3] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [4] 李国权, 党刚, 林金朝, 等. RIS辅助的MISO系统安全鲁棒波束赋形算法[J]. 电子与信息学报, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894.

    LI Guoquan, DANG Gang, LIN Jinzhao, et al. Secure and robust beamforming algorithm for RIS assisted MISO systems[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2867–2875. doi: 10.11999/JEIT220894.
    [5] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [6] 李斌, 刘文帅, 谢万城, 等. 智能超表面赋能移动边缘计算部分任务卸载策略[J]. 电子与信息学报, 2022, 44(7): 2309–2316. doi: 10.11999/JEIT211595.

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Partial computation offloading for double-RIS assisted multi-user mobile edge computing networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2309–2316. doi: 10.11999/JEIT211595.
    [7] 李斌, 刘文帅, 谢万城, 等. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223–233. doi: 10.11959/j.issn.11000-11436x.2022196.

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Computation offloading scheme for RIS-empowered UAV edge network[J]. Journal on Communications, 2022, 43(10): 223–233. doi: 10.11959/j.issn.11000-11436x.2022196.
    [8] BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528.
    [9] WEN Miaowen, ZHENG Beixiong, KIM K J, et al. A survey on spatial modulation in emerging wireless systems: Research progresses and applications[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(9): 1949–1972. doi: 10.1109/JSAC.2019.2929453.
    [10] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [11] BASAR E. Transmission through large intelligent surfaces: A new frontier in wireless communications[C]. 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 2019: 112–117. doi: 10.1109/EuCNC.2019.8801961.
    [12] YAN Wenjing, YUAN Xiaojun, and KUAI Xiaoyan. Passive beamforming and information transfer via large intelligent surface[J]. IEEE Wireless Communications Letters, 2020, 9(4): 533–537. doi: 10.1109/LWC.2019.2961670.
    [13] LIN Shaoe, CHEN Fangjiong, WEN Miaowen, et al. Reconfigurable intelligent surface-aided quadrature reflection modulation for simultaneous passive beamforming and information transfer[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1469–1481. doi: 10.1109/TWC.2021.3104059.
    [14] YAO Jiacheng, XU Jindan, XU Wei, et al. A universal framework of superimposed RIS-phase modulation for MISO communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5413–5418. doi: 10.1109/TVT.2022.3224504.
    [15] BASAR E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187–3196. doi: 10.1109/TCOMM.2020.2971486.
    [16] SINGH U, BHATNAGAR M R, and BANSAL A. RIS-assisted SSK modulation: Reflection phase modulation and performance analysis[J]. IEEE Communications Letters, 2022, 26(5): 1012–1016. doi: 10.1109/LCOMM.2022.3157055.
    [17] MA Teng, XIAO Yue, LEI Xia, et al. Large intelligent surface assisted wireless communications with spatial modulation and antenna selection[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2562–2574. doi: 10.1109/JSAC.2020.3007044.
    [18] JIN Xiaoping, LI Xingchi, WU Zhen, et al. RIS-aided joint transceiver space shift keying reflection modulation[J]. IEEE Communications Letters, 2023, 27(3): 891–895. doi: 10.1109/LCOMM.2023.3236619.
    [19] ZHI Kangda, PAN Cunhua, REN Hong, et al. Active RIS versus passive RIS: Which is superior with the same power budget?[J]. IEEE Communications Letters, 2022, 26(5): 1150–1154. doi: 10.1109/LCOMM.2022.3159525.
    [20] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. Passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [21] LONG Ruizhe, LIANG Yingchang, PEI Yiyang, et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962–4975. doi: 10.1109/TWC.2021.3064024.
    [22] YIGIT Z, BASAR E, WEN Miaowen, et al. Hybrid reflection modulation[J]. IEEE Transactions on Wireless Communications, 2023, 22(6): 4106–4116. doi: 10.1109/TWC.2022.3223132.
    [23] CRAIG J W. A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations[C]. IEEE Military Communications Conference, McLean, USA, 1991: 571–575. doi: 10.1109/MILCOM.1991.258319.
    [24] MATHAI A M and PROVOST S B. Quadratic Forms in Random Variables: Theory and Applications[M]. New York: Marcel Dekker, 1992: 25–43.
    [25] BADIU M A and COON J P. Communication through a large reflecting surface with phase errors[J]. IEEE Wireless Communications Letters, 2020, 9(2): 184–188. doi: 10.1109/LWC.2019.2947445.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  35
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-04-22
  • 网络出版日期:  2024-05-13

目录

    /

    返回文章
    返回