[1] |
DENG Bailin, YAO Yuxin, DYKE R M, et al. A survey of non-rigid 3D registration[J]. Computer Graphics Forum, 2022, 41(2): 559–589. doi: 10.1111/cgf.14502.
|
[2] |
OVSJANIKOV M, BEN-CHEN M, SOLOMON J, et al. Functional maps: A flexible representation of maps between shapes[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 30. doi: 10.1145/2185520.2185526.
|
[3] |
WU Yan, YANG Jun, and ZHAO Jinlong. Partial 3D shape functional correspondence via fully spectral eigenvalue alignment and upsampling refinement[J]. Computers & Graphics, 2020, 92: 99–113. doi: 10.1016/j.cag.2020.09.004.
|
[4] |
LITANY O, REMEZ T, RODOLÀ E, et al. Deep functional maps: Structured prediction for dense shape correspondence[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5660–5668. doi: 10.1109/ICCV.2017.603.
|
[5] |
TOMBARI F, SALTI S, and DI STEFANO L. Unique signatures of histograms for local surface description[C]. The 11th European Conference on Computer Vision, Heraklion, Greece, 2010: 356–369. doi: 10.1007/978-3-642-15558-1_26.
|
[6] |
ROUFOSSE J M, SHARMA A, and OVSJANIKOV M. Unsupervised deep learning for structured shape matching[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1617–1627. doi: 10.1109/ICCV.2019.00170.
|
[7] |
MARIN R, RAKOTOSAONA M J, MELZI S, et al. Correspondence learning via linearly-invariant embedding[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 136.
|
[8] |
ATTAIKI S, PAI G, and OVSJANIKOV M. DPFM: Deep partial functional maps[C]. The 2021 International Conference on 3D Vision, London, United Kingdom, 2021: 175–185. doi: 10.1109/3DV53792.2021.00040.
|
[9] |
DONATI N, CORMAN E, and OVSJANIKOV M. Deep orientation-aware functional maps: Tackling symmetry issues in shape matching[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 732–741. doi: 10.1109/CVPR52688.2022.00082.
|
[10] |
管焱然, 奥利弗·范凯克, 管有庆. 基于重心映射的三角形网格参数化方法研究与实现[J]. 北京邮电大学学报, 2019, 42(5): 83–90. doi: 10.13190/j.jbupt.2018-266.GUAN Yanran, VAN KAICK O, and GUAN Youqing. Research and implementation of triangle mesh parameterization method based on barycentric mapping[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(5): 83–90. doi: 10.13190/j.jbupt.2018-266.
|
[11] |
DONATI N, SHARMA A, and OVSJANIKOV M. Deep geometric functional maps: Robust feature learning for shape correspondence[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8589–8598. doi: 10.1109/CVPR42600.2020.00862.
|
[12] |
EYNARD D, RODOLÀ E, GLASHOFF K, et al. Coupled functional maps[C]. The 2016 Fourth International Conference on 3D Vision, Stanford, USA, 2016: 399–407. doi: 10.1109/3DV.2016.49.
|
[13] |
PINKALL U and POLTHIER K. Computing discrete minimal surfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15–36. doi: 10.1080/10586458.1993.10504266.
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[15] |
SHARP N, ATTAIKI S, CRANE K, et al. DiffusionNet: Discretization agnostic learning on surfaces[J]. ACM Transactions on Graphics (TOG), 2022, 41(3): 27. doi: 10.1145/3507905.
|
[16] |
MELZI S, REN Jing, RODOLÀ E, et al. ZoomOut: Spectral upsampling for efficient shape correspondence[J]. ACM Transactions on Graphics (TOG), 2019, 38(6): 155. doi: 10.1145/3355089.3356524.
|
[17] |
BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and evaluation for 3D mesh registration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3794–3801. doi: 10.1109/CVPR.2014.491.
|
[18] |
ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: Shape completion and animation of people[C]. ACM SIGGRAPH 2005 Papers, Los Angeles, USA, 2005: 408–416. doi: 10.1145/1186822.1073207.
|
[19] |
ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D menagerie: Modeling the 3D shape and pose of animals[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5524–5532. doi: 10.1109/CVPR.2017.586.
|