高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于统计信道状态信息的智能反射面辅助反向散射通信系统鲁棒资源分配算法

徐勇军 徐娟 田秦语 黄崇文

徐勇军, 徐娟, 田秦语, 黄崇文. 基于统计信道状态信息的智能反射面辅助反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169
引用本文: 徐勇军, 徐娟, 田秦语, 黄崇文. 基于统计信道状态信息的智能反射面辅助反向散射通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169
XU Yongjun, XU Juan, TIAN Qinyu, HUANG Chongwen. Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169
Citation: XU Yongjun, XU Juan, TIAN Qinyu, HUANG Chongwen. Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169

基于统计信道状态信息的智能反射面辅助反向散射通信系统鲁棒资源分配算法

doi: 10.11999/JEIT231169
基金项目: 国家自然科学基金(62271094, U23A20279),重庆市自然科学基金重点项目(CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079),重庆市教委科技重点项目(KJZD-K202200601),国家重点研发计划(2021YFA1000500) ,重庆市研究生科研创新项目(CYB23241, CYS23450)
详细信息
    作者简介:

    徐勇军:男,副教授,博士生导师,研究方向为反向散射通信、智能反射面、资源分配等

    徐娟:女,硕士生,研究方向为反向散射通信、智能反射面等

    田秦语:男,硕士生,研究方向为智能反射面、共生无线电等

    黄崇文:男,研究员,研究方向为智能反射面、机器学习、资源分配等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 11)反射节点收集的能量主要满足自身电路功耗和信息传输的需求。2)假设信道服从准静态衰落,则在同一时间帧的不同时隙的信道可以被视为近似不变的。
  • 中图分类号: TN929.5

Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information

Funds: The National Natural Science Foundation of China (62271094, U23A20279), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The National Key R&D Program of China (20221YFA00500), The Graduate Scientific Research Innovation Project of Chongqing (CYB23241, CYS23450)
  • 摘要: 为解决传统反向散射通信(BackCom)系统存在通信距离短、系统吞吐量较低和克服信道不确定性能力差的问题,该文提出一种基于统计信道状态信息(CSI)的智能反射面(RIS)辅助反向散射通信系统鲁棒资源分配算法。考虑功率站最大发射功率约束、反射节点的能量中断约束和吞吐量中断约束、反射系数约束、RIS相移约束和信息传输时间约束,建立了系统加权和吞吐量最大化的鲁棒资源分配模型;利用伯恩斯坦不等式、交替优化和半正定松弛方法,将原非凸问题转换成凸优化问题求解,并提出一种基于迭代的鲁棒吞吐量最大化算法。仿真结果表明,与传统非鲁棒资源分配算法和无RIS资源分配算法相比,所提算法具有更强的鲁棒性和更高的吞吐量。
  • 图  1  RIS辅助的下行多输入单输出反向散射通信系统

    图  2  仿真场景图

    图  3  所提算法的收敛图

    图  4  不同中断速率门限下系统总吞吐量与信道不确定性的关系

    图  5  系统总吞吐量与最小吞吐量阈值的关系

    图  6  不同算法下系统总吞吐量与信道估计误差标准差的关系

    图  7  不同算法下反射单元个数和天线数与系统总吞吐量的关系

    图  8  不同算法下能量中断概率与信道不确定性的关系

    算法1 基于迭代的鲁棒吞吐量最大化算法
     初始化系统参数: $ M,K,L,T,P_k^C,R_k^{\min},{\bar g_k},{{\boldsymbol{g}}_{l,k}},{\bar {\boldsymbol{f}}_k},{\bar {\boldsymbol{h}}_k},\sigma _{{H},K}^2 $,
     $\sigma _{h,k}^2,{P_{\max}},{\delta _k} $, $ {\upsilon _k},{\tilde {\boldsymbol{\varTheta}} ^{(l - 1)}},t_k^{(l - 1)},\alpha _k^{(l - 1)} $,收敛精度$ \varepsilon , $设置内
     层最大迭代次数${L_{\max}},$初始化迭代次数$ l = 0, $令
     $ {R_{{\mathrm{sum}}}} = \sum\nolimits_{k = 1}^K {{\psi _k}{R_k}} {\text{ }} $
     (1) While $ |R_{{\mathrm{sum}}}^{(l)} - R_{{\mathrm{sum}}}^{(l - 1)}| \ge \varepsilon $或$l \le {L_{\max}},$do
     (2) 设置迭代次数$ l = l + 1 $
     (3)  Repeat
     (4)   固定$ \{ {\tilde {\boldsymbol{\varTheta}} ^{(l - 1)}},t_k^{(l - 1)},\alpha _k^{(l - 1)}\} $求解式(20)得到$ {{\boldsymbol{W}}^{(l)}} $,进
         而得到$ {{\boldsymbol{w}}_k}^* $并更新$ {\boldsymbol{w}}_k^{(l)}; $
     (5)  Until收敛
     (6)  Repeat
     (7)   固定$ \{ {\boldsymbol{w}}_k^{(l)},\alpha _k^{(l - 1)}\} $求解式(23)得到$ \{ {\tilde {\boldsymbol{\varTheta }}^{(l)}},t_k^{(l)}\} $进而得
         到$ \theta _l^ * $和$ t_k^ * $并更新$ \{ \theta _l^{(l)},t_k^{(l)}\} $
     (8)  Until收敛
     (9)  Repeat
     (10)   固定$ \{ {\boldsymbol{w}}_k^{(l)},\theta _l^{(l)},t_k^{(l)}\} $求解式(25)得到$ \alpha _k^ * $并更新$ \alpha _k^{(l)} $
     (11) Until收敛
     (12) 将$ \{ {\boldsymbol{w}}_k^{(l)},\theta _l^{(l)},t_k^{(l)},\alpha _k^{(l)}\} $带入更新$ {R_{{\mathrm{sum}}}} $
     (13) End while
     (14) 得到最优的$ \{ {{\boldsymbol{w}}_k}^* = {\boldsymbol{w}}_k^{(l)},\theta _l^ * = \theta _l^{(l)},t_k^ * = t_k^{(l)},\alpha _k^ * = \alpha _k^{(l)}\} $
    下载: 导出CSV

    表  1  不同算法对比

    算法名称优化目标有无RIS鲁棒/非鲁棒
    传统非鲁棒算法[7]最大化系统吞吐量非鲁棒
    无RIS算法[25]鲁棒
    本文所提算法鲁棒
    下载: 导出CSV
  • [1] XU Yongjun, GUI Guan, GACANIN Haris, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2] XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2021, 10(2): 353–357. doi: 10.1109/LWC.2020.3031042.
    [3] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000−436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000−436x.2022199.
    [5] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544.
    [6] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [7] MA Hui, ZHANG Haijun, ZHANG Ning, et al. Reconfigurable intelligent surface with energy harvesting assisted cooperative ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1283–1287. doi: 10.1109/LWC.2022.3164257.
    [8] HAKIMI A, ZARGARI S, TELLAMBURA C, et al. IRS-enabled backscattering in a downlink non-orthogonal multiple access system[J]. IEEE Communications Letters, 2022, 26(12): 2984–2988. doi: 10.1109/LCOMM.2022.3204489.
    [9] GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [10] ZUO Jiakou, LIU Yuanwei, YANG Liang, et al. Reconfigurable intelligent surface enhanced NOMA assisted backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7261–7266. doi: 10.1109/TVT.2021.3087582.
    [11] LV Weigang, BAI Jiale, YAN Qing, et al. RIS-assisted green secure communications: Active RIS or passive RIS?[J]. IEEE Wireless Communications Letters, 2023, 12(2): 237–241. doi: 10.1109/LWC.2022.3221609.
    [12] REHMAN H U, BELLILI F, MEZGHANI A, et al. Modulating intelligent surfaces for multiuser MIMO systems: Beamforming and modulation design[J]. IEEE Transactions on Communications, 2022, 70(5): 3234–3249. doi: 10.1109/TCOMM.2022.3160540.
    [13] ZHAO Jinqiu, YE Jia, GUO Shuaishuai, et al. Reconfigurable intelligent surface enabled joint backscattering and communication[J]. IEEE Transactions on Vehicular Technology, 2023: 1–12. doi: 10.1109/TVT.2023.3305330.
    [14] 吕斌, 曹怡, 李健, 等. IRS辅助的认知反向散射通信网络性能增强方案[J]. 通信学报, 2021, 42(12): 172–181. doi: 10.11959/ j.issn.1000−436x.2021233.

    LV Bin, CAO Yi, LI Jian, et al. Performance enhancement scheme for IRS-assisted cognitive backscatter communication network[J]. Journal on Communications, 2021, 42(12): 172–181. doi: 10.11959/j.issn.1000−436x.2021233.
    [15] GONG Shimin, HUANG Xiaoxia, XU Jing, et al. Backscatter relay communications powered by wireless energy beamforming[J]. IEEE Transactions on Communications, 2018, 66(7): 3187–3200. doi: 10.1109/TCOMM.2018.2809613.
    [16] 张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [17] GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [18] WANG Kunyun, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
    [19] XIN Yanan, XU Yongjun, LIU Qilie, et al. Robust and outage-constrained energy efficiency optimization in RIS-assisted NOMA networks[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860985.
    [20] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666.
    [21] XU Yongjun, JIANG Siqiao, XUE Qing, et al. Throughput maximization for NOMA-based cognitive backscatter communication networks with imperfect CSI[J]. IEEE Internet of Things Journal, 2023, 10(22): 19595–19606. doi: 10.1109/JIOT.2023.3289181.
    [22] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043.
    [23] LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503.
    [24] LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [25] ZHANG Yu, LI Bin, GAO Feifei, et al. A robust design for ultra reliable ambient backscatter communication systems[J]. IEEE Internet of Things Journal, 2019, 6(5): 8989–8999. doi: 10.1109/JIOT.2019.2925843.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  187
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-12-05
  • 网络出版日期:  2023-12-19
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回