高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合基线时间调制阵列的单通道高精度测向系统

林昱龙 王无忌 武军伟 程强

林昱龙, 王无忌, 武军伟, 程强. 基于复合基线时间调制阵列的单通道高精度测向系统[J]. 电子与信息学报, 2024, 46(5): 2028-2035. doi: 10.11999/JEIT231137
引用本文: 林昱龙, 王无忌, 武军伟, 程强. 基于复合基线时间调制阵列的单通道高精度测向系统[J]. 电子与信息学报, 2024, 46(5): 2028-2035. doi: 10.11999/JEIT231137
LIN Yulong, WANG Wuji, WU Junwei, CHENG Qiang. High-precision Direction Finding Based on Time Modulation Array with Single Radio Frequency Channel and Composite Baselines[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2028-2035. doi: 10.11999/JEIT231137
Citation: LIN Yulong, WANG Wuji, WU Junwei, CHENG Qiang. High-precision Direction Finding Based on Time Modulation Array with Single Radio Frequency Channel and Composite Baselines[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2028-2035. doi: 10.11999/JEIT231137

基于复合基线时间调制阵列的单通道高精度测向系统

doi: 10.11999/JEIT231137
基金项目: 国家重点研发计划(2021YFA1401002),国家自然科学基金(62171124, 62288101, 62225108),鹏城实验室重大项目(PCL2023AS1-2)
详细信息
    作者简介:

    林昱龙:男,博士生,研究方向为人工电磁材料、天线理论等

    王无忌:男,硕士,研究方向为人工电磁材料、天线理论等

    武军伟:男,副研究员,博士生导师,研究方向为人工电磁材料、计算电磁学等

    程强:男,教授,博士生导师,研究方向为人工电磁材料、天线、无线通信及雷达等

    通讯作者:

    武军伟 jwwu@seu.edu.cn

  • 中图分类号: TN911.7

High-precision Direction Finding Based on Time Modulation Array with Single Radio Frequency Channel and Composite Baselines

Funds: The National Key Research and Development Program of China (2021YFA1401002), The National Natural Science Foundation of China (62171124, 62288101, 62225108), The Major Key Project of Peng Cheng Laboratory (PCL2023AS1-2)
  • 摘要: 随着定位系统的快速发展,人们对高精度、低成本测向技术的需求日益增大。传统测向方法复杂的硬件结构和高昂的经济成本阻碍了其广泛应用。近年来,基于时间调制阵列(TMA)的测向技术克服了传统测向方法的缺陷,但为了确保测量精度,阵列中仍必须保持足够的单元数量。因此出现了一个问题,即是否能在确保高测向精度的前提下减少时间调制阵列中的单元数量,从而尽可能降低系统的硬件复杂度。所以,该文提出一种基于时间调制阵列的单通道复合基线测向方法并进行了实验验证。该方法将4根天线按特定的间隔排列,形成复合基线系统,利用现场可编程门阵列(FPGA)和单接收通道,实现了高精度、低成本的测向。为了验证所提方法的有效性,该文设计、制作并测量了工作在S波段的原型系统,并与现有测向方法进行了详细比较。该工作对高精度、低成本测向系统的开发和应用具有重要意义。
  • 图  1  基于2元时间调制阵列的传统测向系统示意图

    图  2  基于单射频通道复合基线时间调制阵列的测向方法示意图

    图  3  基于本文所提方法的接收信号归一化功率谱图

    图  4  本文所提方法与传统方法在不同入射角度下的误差比较

    图  5  双信号源入射时基于复合基线测向方法的测向误差

    图  6  采用传统方法和本文提出方法测向的实验图

    图  7  传统测向方法和本文提出方法的测向绝对误差对比

    表  1  实验1结果(º)

    入射角度 测量角度 绝对误差
    0 2.17 2.17
    10 10.68 0.68
    20 22.07 2.07
    30 32.26 2.26
    40 42.65 2.65
    50 53.420 3.42
    60 263.19 3.19
    70 72.20 2.20
    下载: 导出CSV

    表  2  实验2结果(º)

    入射角度 测量角度 绝对误差
    0 1.37 1.37
    10 10.03 0.03
    20 21.06 1.06
    30 31.15 1.15
    40 41.26 1.26
    50 51.34 1.34
    60 61.65 1.65
    70 72.60 2.60
    下载: 导出CSV
  • [1] PAN Cunhua, REN Hong, WANG Kezhi, et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[J]. IEEE Communications Magazine, 2021, 59(6): 14–20. doi: 10.1109/MCOM.001.2001076.
    [2] YUAN Jie, LIANG Yingchang, JOUNG Jingon, et al. Intelligent reflecting surface-assisted cognitive radio system[J]. IEEE Transactions on Communications, 2021, 69(1): 675–687. doi: 10.1109/TCOMM.2020.3033006.
    [3] LI Sixian, DUO Bin, YUAN Xiaojun, et al. Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716–720. doi: 10.1109/LWC.2020.2966705.
    [4] AI Yun, DEFIGUEIREDO F A P, KONG Long, et al. Secure vehicular communications through reconfigurable intelligent surfaces[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7272–7276. doi: 10.1109/TVT.2021.3088441.
    [5] AL-HILO A, SAMIR M, ELHATTAB M, et al. Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2333–2345. doi: 10.1109/TVT.2022.3141935.
    [6] BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192.
    [7] BURTNYK N, MCLEISH C W, and WOLFE J. Interferometer direction finder for the H. F. band[J]. Proceedings of the Institution of Electrical Engineers, 1963, 110(7): 1165–1170. doi: 10.1049/piee.1963.0162.
    [8] WATT R A W and HERD J F. An instantaneous direct-reading radiogoniometer[J]. Journal of the Institution of Electrical Engineers, 1926, 64(353): 611–617. doi: 10.1049/jiee-1.1926.0051.
    [9] KRIM H and VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67–94. doi: 10.1109/79.526899.
    [10] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [11] RAO B D and HARI K V S. Performance analysis of root-music[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540.
    [12] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
    [13] SHANKS H E and BICKMORE R W. Four-dimensional electromagnetic radiators[J]. Canadian Journal of Physics, 1959, 37(3): 263–275. doi: 10.1139/p59-031.
    [14] FONDEVILA J, BRÉGAINS J C, ARES F, et al. Application of time modulation in the synthesis of sum and difference patterns by using linear arrays[J]. Microwave and Optical Technology Letters, 2006, 48(5): 829–832. doi: 10.1002/mop.21489.
    [15] XIA Dexiao, WANG Xin, HAN Jiaqi, et al. Accurate 2-D DOA estimation based on active metasurface with nonuniformly periodic time modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(8): 3424–3435. doi: 10.1109/TMTT.2022.3222322.
    [16] ZHOU Qunyan, WU Junwei, WANG Siran, et al. Two-dimensional direction-of-arrival estimation based on time-domain-coding digital metasurface[J]. Applied Physics Letters, 2022, 121(18): 181702. doi: 10.1063/5.0124291.
    [17] HE Chong, CAO Anjie, CHEN Jingfeng, et al. Direction finding by time-modulated linear array[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3642–3652. doi: 10.1109/TAP.2018.2835164.
    [18] HE Chong, CHEN Jingfeng, LIANG Xianling, et al. High-accuracy DOA estimation based on time-modulated array with long and short baselines[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(8): 1391–1395. doi: 10.1109/LAWP.2018.2846805.
    [19] JACOBS E and RALSTON E W. Ambiguity resolution in interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(6): 766–780. doi: 10.1109/TAES.1981.309127.
    [20] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  125
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2024-02-13
  • 网络出版日期:  2024-03-06
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回