高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知

李俊辉 侯兴松

李俊辉, 侯兴松. 基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知[J]. 电子与信息学报, 2024, 46(2): 472-480. doi: 10.11999/JEIT231069
引用本文: 李俊辉, 侯兴松. 基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知[J]. 电子与信息学报, 2024, 46(2): 472-480. doi: 10.11999/JEIT231069
LI Junhui, HOU Xingsong. Pseudo Supervised Attention Short-term Memory and Multi-Scale Deartifacting Network Based on Image Block Compressed Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(2): 472-480. doi: 10.11999/JEIT231069
Citation: LI Junhui, HOU Xingsong. Pseudo Supervised Attention Short-term Memory and Multi-Scale Deartifacting Network Based on Image Block Compressed Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(2): 472-480. doi: 10.11999/JEIT231069

基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知

doi: 10.11999/JEIT231069
基金项目: 国家自然科学基金(62272376, 61872286),陕西省重点研发项目(202DLGY04-05, S2021-YF-YBSF-0094)
详细信息
    作者简介:

    李俊辉:男,博士生,研究方向为图像压缩感知重建、图像压缩

    侯兴松:男,教授,博士生导师,研究方向为图像压缩感知、图像压缩、计算机视觉

    通讯作者:

    侯兴松 houxs@mail.xjtu.edu.cn

  • 中图分类号: TN911.73; TN751

Pseudo Supervised Attention Short-term Memory and Multi-Scale Deartifacting Network Based on Image Block Compressed Sensing

Funds: The National Natural Science Foundation of China (62272376, 61872286), Key R&D Program of Shaanxi Province, China (202DLGY04-05, S2021-YF-YBSF-0094)
  • 摘要: 基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT) 算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(MSD-Net)的图像BCS迭代方法(PSASM-MD)。首先,在每步迭代中,利用残差网络并行地对每个图像子块单独去噪后再拼接。然后,对拼接后的图像采用含有伪监督注意力模块(PSAM)的MSD-Net进行特征提取,以更好地去除块伪影以提高重建性能。其中,PSAM被用于从含有块伪影的残差中抽取部分有用信号,并传递到下一步迭代实现短期记忆,以尽量避免去除有用信号。实验结果表明,该文方法相比现有先进的同类BCS方法在主观视觉感知和客观评价指标上均取得了更优的结果。
  • 图  1  PSASM-MD模型框架

    图  2  PSASM-MD中第k次迭代网络结构

    图  3  MSD-Net的网络结构

    图  4  PSAM的网络结构

    图  5  不同BCS算法在Set11中“Flinstones”和“Peppers”上的重建结果

    图  6  不同BCS算法在BSD68中的“test034” 和“test045”上的重建结果

    图  7  不同网络结构下中间迭代重建图的特征图以及最终的重建图

    图  8  不同迭代阶段的重建图像的残差图和PSAM提取的特征图以及最终重建图的残差图

    表  1  几种BCS算法在Set11上不同采样率下PSNR(dB)/SSIM的平均值

    采样率$\gamma $(%)ISTA-Net+OPINE-Net+AMP-NetTransCSTCS-NetPSASM-MD
    117.45/0.413120.15/0.534020.20/0.5580-/-21.09/0.550522.01/0.6077
    421.56/0.624025.69/0.792025.26/0.772225.41/0.788325.46/0.786326.40/0.8001
    1026.49/0.803629.81/0.888429.40/0.877929.54/0.887729.04/0.883430.40/0.8906
    2532.44/0.923734.86/0.950934.63/0.948135.06/0.954833.94/0.950835.24/0.9519
    5038.07/0.970640.17/0.979740.34/0.980440.49/0.9815-/-40.90/0.9812
    下载: 导出CSV

    表  2  几种BCS算法在BSD68 上不同采样率下PSNR(dB)/SSIM的平均值

    采样率$\gamma $(%)ISTA-Net+OPINE-Net+AMP-NetTransCSTCS-NetPSASM-MD
    119.18/0.420122.11/0.514021.97/0.5086-/-22.26/0.519422.89/0.5530
    422.34/0.557325.00/0.682525.40/0.698525.28/0.688125.07/0.682925.59/0.6847
    1025.30/0.700127.82/0.804527.41/0.803627.86/0.808627.42/0.803728.20/0.7993
    2529.31/0.850731.51/0.906131.56/0.912131.74/0.912130.94/0.908331.98/0.9069
    5034.01/0.942136.35/0.966036.64/0.970736.81/0.9699-/-37.19/0.9689
    下载: 导出CSV

    表  3  PSASM-MD不同网络结构下Set11上的平均PSNR(dB)/SSIM结果

    采样率$\gamma $(%) RCNN RCNN+
    DCNN[14]
    RCNN+
    MSD-Net
    RCNN+MSD-Net+PSAM
    4 25.49/
    0.7676
    26.06/0.7882 26.29/0.7962 26.40/0.7986
    10 29.52/
    0.8773
    29.98/0.8848 30.11/0.8873 30.38/0.8914
    下载: 导出CSV
  • [1] HOU Hao, SHAO Yuchen, GENG Yang, et al. PNCS: Pixel-level non-local method based compressed sensing undersampled MRI image reconstruction[J]. IEEE Access, 2023, 11: 42389–42402. doi: 10.1109/ACCESS.2023.3270900.
    [2] 王洋, 杨孟宇, 赵首博. 基于自适应分块的高光谱图像压缩感知重构方法[J]. 电子与信息学报, 2023, 45(7): 2605–2613. doi: 10.11999/JEIT220738.

    WANG Yang, YANG Mengyu, and ZHAO Shoubo. Compressed sensing reconstruction of hyperspectral images based on adaptive blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605–2613. doi: 10.11999/JEIT220738.
    [3] LIU Yang, YUAN Xin, SUO Jinli, et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 2990–3006. doi: 10.1109/TPAMI.2018.2873587.
    [4] TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108.
    [5] BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
    [6] METZLER C A, MOUSAVI A, and BARANIUK R. Learned D-AMP: Principled neural network based compressive image recovery[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1770–1781. doi: 10.5555/3294771.3294940.
    [7] MOUSAVI A, PATEL A B, and BARANIUK R G. A deep learning approach to structured signal recovery[C]. The 53rd Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2015: 1336–1343. doi: 10.1109/ALLERTON.2015.7447163.
    [8] KULKARNI K, LOHIT S, TURAGA P, et al. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 449–458. doi: 10.1109/CVPR.2016.55.
    [9] GAN Hongping, SHEN Minghe, HUA Yi, et al. From patch to pixel: A transformer-based hierarchical framework for compressive image sensing[J]. IEEE Transactions on Computational Imaging, 2023, 9: 133–146. doi: 10.1109/TCI.2023.3244396.
    [10] LIU Ze, LIN Yutong, GAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. IEEE International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [11] ZHANG Jian, CHEN Bin, XIONG Ruiqin, et al. Physics-inspired compressive sensing: Beyond deep unrolling[J]. IEEE Signal Processing Magazine, 2023, 40(1): 58–72. doi: 10.1109/MSP.2022.3208394.
    [12] ZHANG Jian and GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1828–1837. doi: 10.1109/CVPR.2018.00196.
    [13] ZHANG Jian, ZHAO Chen, and GAO Wen. Optimization-inspired compact deep compressive sensing[J]. IEEE Journal of Selected Topics in Signal Processing. 2020, 14(4): 765–774. doi: 10.1109/JSTSP.2020.2977507.
    [14] ZHANG Zhonghao, LIU Yipeng, LIU Jiani, et al. AMP-Net: Denoising-based deep unfolding for compressive image sensing[J]. IEEE Transactions on Image Processing, 2021, 30: 1487–1500. doi: 10.1109/TIP.2020.3044472.
    [15] CHEN Chang, XIONG Zhiwei, TIAN Xinmei, et al. Real-world image denoising with deep boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(12): 3071–3087. doi: 10.1109/TPAMI.2019.2921548.
    [16] MA Jiayi, PENG Chengli, TIAN Xin, et al. DBDnet: A deep boosting strategy for image denoising[J]. IEEE Transactions on Multimedia, 2022, 24: 3157–3168. doi: 10.1109/TMM.2021.3094058.
    [17] SHEN Minghe, GAN Hongping, NING Chao, et al. TransCS: A transformer-based hybrid architecture for image compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 6991–7005. doi: 10.1109/TIP.2022.3217365.
    [18] CUI Wenxue, LIU Shaohui, JIANG Feng, et al. Image compressed sensing using non-local neural network[J]. IEEE Transactions on Multimedia, 2023, 25: 816–830. doi: 10.1109/TMM.2021.3132489.
    [19] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [20] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [21] WANG Huake, LI Ziang, and HOU Xingsong. Versatile denoising-based approximate message passing for compressive sensing[J]. IEEE Transactions on Image Processing, 2023, 32: 2761–2775. doi: 10.1109/TIP.2023.3274967.
    [22] LIU Pengju, ZHANG Hongzhi, ZHANG Kai, et al. Multi-level wavelet-CNN for image restoration[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 886. doi: 10.1109/CVPRW.2018.00121.
    [23] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. 8th IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. doi: 10.1109/ICCV.2001.937655.
    [24] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
    [25] LOSHCHILOV I and HUTTER F. Decoupled weight decay regularization[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  132
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2024-01-17
  • 网络出版日期:  2024-01-20
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回