Integrated Scheduling Algorithm for Flexible Equipment Network Considering Same Layer After Process
-
摘要: 针对柔性设备网络综合调度算法,难以合理选择加工设备加工相关工序进而影响产品完工时间的问题,该文提出考虑同层后道工序的柔性设备网络综合调度算法(SP-FENIS)。首先,采用逆序层优先策略,将各工序分配至逆序层待调度工序集;然后,提出均值逆序紧后路径策略,确定了各逆序层待调度工序集中工序的调度顺序;最后,提出最早完工时间策略和设备空闲插入策略,当工序在柔性设备上最早完工时间相同时,考虑了在柔性设备上的加工时间和同层后道工序的加工设备,确定了目标工序的加工设备以及加工时间。实例表明,和已有算法相比,该算法能够缩短产品完工时间。Abstract: The integrated scheduling algorithm of flexible equipment network is difficult to reasonably select the relevant processes of processing equipment, which affects the completion time of products. An Integrated Scheduling algorithm for Flexible Equipment Network considering the Same layer after Process (SP-FENIS) is proposed. Firstly, the priority strategy of the reverse order layer is adopted, which assigns each process to the set of processes to be scheduled in the reverse layer. Then, the average reverse-order compact path strategy is proposed to determine the scheduling sequence of the processes to be scheduled in each reverse order layer. Finally, the earliest completion time strategy and equipment idle insertion strategy are proposed. When the earliest completion time of the process on the flexible equipment is the same, the processing time on the flexible equipment and the processing equipment of the same layer after the process are considered, and the processing equipment and processing time of the target process are determined. The example shows that, compared with the existing algorithm, the proposed algorithm can shorten the product completion time.
-
表 1 SP-FENIS算法调度产品A的调度过程
逆序待调度
工序集工序号 EFT 所选加工设备 M1 M2 M3 M4 A20 A20 25 15 null 20 M2 A19,A18 A19 null 35 40 null M2 A18 30 null 40 35 M1 A17,A16,
A15A17 55 null 60 55 M4(工序A17在M1,M3上最早完工时间和加工用时都相同,根据同层后道工序A16的短用时设备M1进行选择,选择与同层后道工序的短用时设备不同的加工设备M4) A16 50 null 60 null M1 A15 null 60 50 80 M3 A14,A12,
A11,A13A14 null 95 null 75 M4 A12 70 null 70 120 M3(工序A12在M1,M3上最早完工时间和加工用时都相同,同时没有与同层后道工序的短用时设备相同的加工设备,则进行随机选择,选择M3) A11 null 80 null 95 M2 A13 65 100 null 90 M1 A9,A7,A10,
A8,A6A9 105 100 100 null M2(工序A9在M2,M3上最早完工时间相同,在M2上加工用时短,选择M2) A7 null 130 85 95 M3 A10 95 125 110 null M1 A8 115 null 100 100 M3(工序A8在M2,M3上最早完工时间相同,在M3上加工用时短,选择M3) A6 110 null 120 null M1 A4,A3,A5 A4 140 null null 120 M4 A3 125 130 120 null M3 A5 null 120 135 160 M2 A1,A2 A1 null null 140 130 M4 A2 130 135 null null M1 -
[1] MIYATA H H and NAGANO M S. Optimizing distributed no-wait flow shop scheduling problem with setup times and maintenance operations via iterated greedy algorithm[J]. Journal of Manufacturing Systems, 2021, 61: 592–612. doi: 10.1016/j.jmsy.2021.10.005. [2] YANG Yahong and LI Xun. A knowledge-driven constructive heuristic algorithm for the distributed assembly blocking flow shop scheduling problem[J]. Expert Systems with Applications, 2022, 202: 117269. doi: 10.1016/j.eswa.2022.117269. [3] DU Yu, LI Junqing, CHEN Xiaolong, et al. Knowledge-based reinforcement learning and estimation of distribution algorithm for flexible job shop scheduling problem[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(4): 1036–1050. doi: 10.1109/TETCI.2022.3145706. [4] WENG Wei, CHEN Junru, ZHENG Meimei, et al. Realtime scheduling heuristics for just-in-time production in large-scale flexible job shops[J]. Journal of Manufacturing Systems, 2022, 63: 64–77. doi: 10.1016/j.jmsy.2022.01.006. [5] 谢志强, 裴莉榕. 存在设备时间限制的两个企业协同的综合调度算法[J]. 电子与信息学报, 2022, 44(5): 1653–1663. doi: 10.11999/JEIT211394.XIE Zhiqiang and PEI Lirong. Integrated scheduling algorithm for two corporate synergies with equipment time constraints[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1653–1663. doi: 10.11999/JEIT211394. [6] GAO Yilong, XIE Zhiqiang, JIA Qing, et al. An effective memetic algorithm for the distributed integrated scheduling of tree-structured products[J]. International Journal of Cooperative Information Systems, 2021, 30(01n04): 2150001. doi: 10.1142/S0218843021500015. [7] ZHANG Xiaowei, XIE Zhiqiang, SHAO Xia, et al. An integrated scheduling method for personalized products with no-wait constraints[J]. The International Journal of Advanced Manufacturing Technology, 2022, 122(1): 279–290. doi: 10.1007/s00170-022-09394-8. [8] 谢志强, 周伟, 杨静. 工艺树子树循环分解的资源协同综合调度算法[J]. 机械工程学报, 2022, 58(13): 228–239. doi: 10.3901/JME.2022.13.228.XIE Zhiqiang, ZHOU Wei, and YANG Jing. Resource cooperative integrated scheduling algorithm based on sub-tree cycle decomposition of process Tree[J]. Journal of Mechanical Engineering, 2022, 58(13): 228–239. doi: 10.3901/JME.2022.13.228. [9] 郭伟飞, 宋豫川, 周璠, 等. 基于逆序虚拟零部件的紧密衔接综合调度算法[J]. 计算机集成制造系统, 2020, 26(12): 3313–3328. doi: 10.13196/j.cims.2020.12.014.GUO Weifei, SONG Yuchuan, ZHOU Fan, et al. Integrated scheduling algorithm of complex product with no-wait constraint based on reversed virtual component[J]. Computer Integrated Manufacturing Systems, 2020, 26(12): 3313–3328. doi: 10.13196/j.cims.2020.12.014. [10] XIE Zhiqiang, HAO Shuzhen, YE Guangjie, et al. A new algorithm for complex product flexible scheduling with constraint between jobs[J]. Computers & Industrial Engineering, 2009, 57(3): 766–772. doi: 10.1016/j.cie.2009.02.004. [11] XIE Zhiqiang, WANG Peng, CHANG Ningning, et al. Flexible integrated scheduling algorithm base on static processing time[C]. 2011 International Conference on Computer Science and Service System, Nanjing, China, 2011: 1279–1282. doi: 10.1109/CSSS.2011.5974426. [12] YANG Dan, XIE Zhiqiang, and ZHANG Chunting. Multi-flexible integrated scheduling algorithm for multi-flexible integrated scheduling problem with setup times[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 9781–9817. doi: 10.3934/mbe.2023429. [13] 谢志强, 邵侠, 杨静. 存在设备无关延迟约束的综合柔性调度算法[J]. 机械工程学报, 2011, 47(4): 177–185. doi: 10.3901/JME.2011.04.177.XIE Zhiqiang, SHAO Xia, and YANG Jing. Algorithm for integrated flexible scheduling with device-independence deferred constraint[J]. Journal of Mechanical Engineering, 2011, 47(4): 177–185. doi: 10.3901/JME.2011.04.177. [14] 谢志强, 周含笑, 于洁, 等. 基于设备驱动的综合柔性调度冲突调解算法[J]. 北京理工大学学报, 2014, 34(11): 1150–1156. doi: 10.15918/j.tbit1001-0645.2014.11.011.XIE Zhiqiang, ZHOU Hanxiao, YU Jie, et al. Conflict mediation algorithm of the integrated flexible scheduling based on device driver[J]. Transactions of Beijing Institute of Technology, 2014, 34(11): 1150–1156. doi: 10.15918/jtbit1001-0645.2014.11.011. doi: 10.15918/j.tbit1001-0645.2014.11.011. [15] 谢志强, 桂忠艳, 杨静. 基于设备驱动和实质路径的动态并行综合柔性调度算法[J]. 机械工程学报, 2014, 50(18): 203–212. doi: 10.3901/JME.2014.18.203.XIE Zhiqiang, GUI Zhongyan, and YANG Jing. Dynamic parallel integrated flexible scheduling algorithm based on device driver and essential path[J]. Journal of Mechanical Engineering, 2014, 50(18): 203–212. doi: 10.3901/JME.2014.18.203. [16] 谢志强, 王茜. 基于逆序层优先的柔性综合调度算法[J]. 电子与信息学报, 2022, 44(5): 1554–1562. doi: 10.11999/JEIT211378.XIE Zhiqiang and WANG Qian. Flexible integrated scheduling algorithm based on reverse order layer priority[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1554–1562. doi: 10.11999/JEIT211378. [17] YANG Dan, XIE Zhiqiang, LIU Qi, et al. A signal-driven based flexible integrated scheduling algorithm with bidirectional coordination mechanism[J]. Multimedia Tools and Applications, 2023, 82(22): 34029–34051. doi: 10.1007/s11042-023-14544-5. [18] GAO Yilong, XIE Zhiqiang, YANG Dan, et al. Flexible integrated scheduling algorithm based on remaining work probability selection coding[J]. Expert Systems, 2021, 38(4): e12683. doi: 10.1111/exsy.12683. [19] XIE Zhiqiang, YANG Dan, MA Mingrui, et al. An improved artificial bee colony algorithm for the flexible integrated scheduling problem using networked devices collaboration[J]. International Journal of Cooperative Information Systems, 2020, 29(01n02): 2040003. doi: 10.1142/S0218843020400031.