高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多相参处理间隔频响特征聚类的有源假目标鉴别方法

韦文斌 彭锐晖 孙殿星 谭顺成 宋颖娟 张家林

韦文斌, 彭锐晖, 孙殿星, 谭顺成, 宋颖娟, 张家林. 基于多相参处理间隔频响特征聚类的有源假目标鉴别方法[J]. 电子与信息学报, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012
引用本文: 韦文斌, 彭锐晖, 孙殿星, 谭顺成, 宋颖娟, 张家林. 基于多相参处理间隔频响特征聚类的有源假目标鉴别方法[J]. 电子与信息学报, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012
WEI Wenbin, PENG Ruihui, SUN Dianxing, TAN Shuncheng, SONG Yingjuan, ZHANG Jialin. Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012
Citation: WEI Wenbin, PENG Ruihui, SUN Dianxing, TAN Shuncheng, SONG Yingjuan, ZHANG Jialin. Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2721-2731. doi: 10.11999/JEIT231012

基于多相参处理间隔频响特征聚类的有源假目标鉴别方法

doi: 10.11999/JEIT231012
基金项目: 航天科技集团稳定支持项目(ZY0110020009),中国博士后科学基金(2021M693003),国家自然科学基金(61731023)
详细信息
    作者简介:

    韦文斌:博士生,研究方向为雷达抗干扰、雷达信号处理

    彭锐晖:博士,副教授,研究方向为雷达抗干扰、雷达目标特性

    孙殿星:博士,副教授,研究方向为雷达抗干扰、目标跟踪

    谭顺成:博士,副教授,研究方向为雷达抗干扰、目标跟踪

    宋颖娟:硕士生,研究方向为雷达抗干扰、深度学习

    张家林:硕士生,研究方向为雷达抗干扰、深度学习

    通讯作者:

    彭锐晖 pengruihui@hrbeu.edu.cn

  • 中图分类号: TN974

Active False Target Identification Method Based on Frequency Response Features Clustering in Multi-Coherent Processing Intervals

Funds: China Aerospace Science and Technology Corporation Stabilization Support Project (ZY0110020009), China Postdoctoral Science Foundation (2021M693003), The National Natural Science Foundation of China (61731023)
  • 摘要: 现有真-假目标智能识别算法大多基于监督学习,且在低信噪比条件下表现不好。针对上述问题,该文分别利用真、假目标在多个相参处理间隔(CPIs)内散射特性的时变性和唯一性,提出一种多相参处理间隔频响特征聚类的真、假目标无监督鉴别方法。首先,在快-慢时域中沿快时间维度对真、假目标进行加窗截断,提取快-慢时间域频率响应特征用于构建初步样本集;然后,通过Agglomerative聚类和特征融合网络组成的两步识别算法对真-假目标进行识别;最后,提出一种多相参处理间隔联合决策方法提升识别性能和可靠性。经仿真和实测数据检验,证明了所提方法可实现真实目标和多种有源假目标的有效分离。
  • 图  1  特征提取流程图

    图  2  聚类结果示意图

    图  3  算法流程

    图  4  信号脉压和相参累积结果

    图  5  真实目标和欺骗干扰假目标的快-慢时间域幅频响应特征对比

    图  6  仿真识别结果

    图  7  聚类结果可视化

    表  1  仿真参数

    参数 取值 参数 取值
    载频 10 GHz 脉冲重复频率 3 kHz
    脉宽 70${\text{ μs}}$ 相参累积脉冲数量 64
    带宽 25 MHz 矩形窗口长度 128
    采样频率 60 MHz 截断后FFT点数 256
    真实目标距离 10.5 km 真实目标速度 18 m/s
    假目标个数 4 假目标距离 真实目标附近2 km
    下载: 导出CSV

    表  2  1DCNN-LSTM参数

    上通道 卷积核大小 激活函数 池化
    卷积层1 8 × 1 × 4 ReLU 2 × 1
    卷积层2 8 × 1 × 4 ReLU 2 × 1
    卷积层3 8 × 1 × 4 ReLU 2 × 1
    下载: 导出CSV

    表  3  实测数据实验参数

    参数 取值 参数 取值
    载频 10 GHz 脉冲重复频率 3 kHz
    脉宽 60${\text{ μs}}$ 相参累积脉冲数量 64
    带宽 30 MHz 真实目标距离 8.5 km
    采样频率 80 MHz 假目标距离 真实目标附近1 km
    下载: 导出CSV

    表  4  实测数据上识别结果(%)

    决策方法平均识别率真实目标识别率假目标识别率
    独立决策法86.788.385.1
    联合决策法95.896.795.0
    下载: 导出CSV

    表  5  平均识别率与文献[14]对比结果

    信噪比(dB) 本文方法(%) 文献[14]方法(%)
    –12 99.2 53.6
    –11 99.4 65.2
    –10 99.3 80.5
    –9 99.7 90.3
    –8 99.8 95.8
    –7 100.0 98.7
    –6 100.0 99.7
    下载: 导出CSV

    表  6  平均识别率与文献[6]对比结果

    信噪比(dB) 本文方法(%) 文献[6]方法(%)
    –8 99.8 78.2
    –7 99.8 84.6
    –6 100.0 91.3
    –5 99.9 93.2
    –4 100.0 95.1
    –3 100.0 97.2
    –2 100.0 98.4
    下载: 导出CSV

    表  7  平均识别率与文献[25]对比结果

    信噪比(dB) 本文方法(%) 文献[25]方法(%)
    –8 99.1 92.4
    –7 99.3 91.8
    –6 99.3 92.7
    –5 99.7 91.5
    –4 99.8 92.7
    –3 100.0 93.4
    –2 100.0 92.9
    下载: 导出CSV
  • [1] 温镇铭, 王国宏, 张亮, 等. 基于正负频偏脉冲压缩相参积累的移频干扰鉴别方法[J]. 电子与信息学报, 2023, 45(8): 2936–2944. doi: 10.11999/JEIT220873.

    WEN Zhenming, WANG Guohong, ZHANG Liang, et al. Frequency-shift jamming identification methods based on positive and negative frequency shift pulse compression coherent integration[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2936–2944. doi: 10.11999/JEIT220873.
    [2] 张洋, 位寅生, 于雷. 抗主瓣多假目标欺骗干扰EPC-MIMO波形自适应优化设计技术[J]. 电子学报, 2022, 50(3): 513–523. doi: 10.12263/DZXB.20210329.

    ZHANG Yang, WEI Yinsheng, and YU Lei. Adaptive optimization design technology of EPC-MIMO waveform against mainlobe multiple false targets deception jamming[J]. Acta Electronica Sinica, 2022, 50(3): 513–253. doi: 10.12263/DZXB.20210329.
    [3] 王国宏, 孙殿星, 白杰, 等. 基于预估-反馈联合处理的射频噪声干扰抑制算法[J]. 航空学报, 2018, 39(3): 321500. doi: 10.7527/ S1000-6893.2017.21500.

    WANG Guohong, SUN Dianxing, BAI Jie, et al. Radio frequency noise interference suppression based on estimation-feedback integration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 321500. doi: 10.7527/S1000-6893.2017.21500.
    [4] 孙闽红, 丁辰伟, 张树奇, 等. 基于统计相关差异的多基地雷达拖引欺骗干扰识别[J]. 电子与信息学报, 2020, 42(12): 2992–2998. doi: 10.11999/JEIT190634.

    SUN Minhong, DING Chenwei, ZHANG Shuqi, et al. Recognition of deception jamming based on statistical correlation difference in a multistatic radar system[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2992–2998. doi: 10.11999/JEIT190634.
    [5] WU Qihua, ZHAO Feng, AI Xiaofeng, et al. Two-dimensional blanket jamming against ISAR using Nonperiodic ISRJ[J]. IEEE Sensors Journal, 2019, 19(11): 4031–4038. doi: 10.1109/JSEN.2019.2897363.
    [6] ZHOU Hongping, DONG Chengcheng, WU Ruowu, et al. Feature fusion based on bayesian decision theory for radar deception jamming recognition[J]. IEEE Access, 2021, 9: 16296–16304. doi: 10.1109/ACCESS.2021.3052506.
    [7] XU Chang, YU Lei, WEI Yinsheng, et al. Research on active jamming recognition in complex electromagnetic environment[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173455.
    [8] HAO Zhimei, YU Wen, and CHEN Wei. Recognition method of dense false targets jamming based on time-frequency atomic decomposition[J]. The Journal of Engineering, 2019, 2019(20): 6354–6358. doi: 10.1049/joe.2019.0147.
    [9] SU Detao and GAO Meiguo. Research on jamming recognition technology based on characteristic parameters[C]. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2020: 303–307. doi: 10.1109/ICSIP49896.2020.9339393.
    [10] 周红平, 王子伟, 郭忠义. 雷达有源干扰识别算法综述[J]. 数据采集与处理, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.

    ZHOU Hongping, WANG Ziwei, and GUO Zhongyi. Overview on recognition algorithms of radar active jamming[J]. Journal of Data Acquisition and Processing, 2022, 37(1): 1–20. doi: 10.16337/j.1004-9037.2022.01.001.
    [11] BHATTI F A, KHAN M J, SELIM A, et al. Shared spectrum monitoring using deep learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1171–1185. doi: 10.1109/TCCN.2021.3071149.
    [12] 韦文斌, 彭锐晖, 孙殿星, 等. 基于频响特性的大起伏密集假目标干扰识别技术[J]. 兵工学报, 2023, 44(10): 3204–3217. doi: 10.12382/bgxb.2022.0610.

    WEI Wenbin, PENG Ruihui, SUN Dianxing, et al. Recognition of dense false target jamming with large fluctuations using frequency response characteristics[J]. Acta Armamentarii, 2023, 44(10): 3204–3217. doi: 10.12382/bgxb.2022.0610.
    [13] LIU Qiang and ZHANG Wei. Deep learning and recognition of radar jamming based on CNN[C]. 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2019: 208–212. doi: 10.1109/ISCID.2019.00054.
    [14] LV Qinzhe, QUAN Yinghui, FENG Wen, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5107511. doi: 10.1109/TGRS.2021.3129645.
    [15] 张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12(4): 882–891. doi: 10.12000/JR23104.

    ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12(4): 882–891. doi: 10.12000/JR23104.
    [16] LIU Jin, HE Siyuan, ZHANG Lei, et al. An automatic and forward method to establish 3-D parametric scattering center models of complex targets for target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8701–8716. doi: 10.1109/TGRS.2020.2989856.
    [17] PENG Ruihui, WEI Wenbin, SUN Dianxing, et al. A positive-unlabeled radar false target recognition method based on frequency response features[J]. IEEE Signal Processing Letters, 2023, 30: 1067–1071. doi: 10.1109/LSP.2023.3305192.
    [18] DAI Fengzhou, LIU Jiang, TIAN Long, et al. An end-to-end approach for rigid-body target micro-Doppler analysis based on the asymmetrical autoencoding network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–19. doi: 10.1109/TGRS.2023.3255863.
    [19] FISHER P O and AL-SARAWI S F. An optimized segmented quasi-memoryless nonlinear behavioral modeling approach for RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 294–305. doi: 10.1109/TMTT.2017.2723010.
    [20] 邢孟道, 王彤, 李真芳, 等. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2008: 143–144.

    XING Mengdao, WANG Tong, LI Zhenfang, et al. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2008: 143–144.
    [21] SUN Kun and TAO Wenbing. A constrained radial agglomerative clustering algorithm for efficient structure from motion[J]. IEEE Signal Processing Letters, 2018, 25(7): 1089–1093. doi: 10.1109/LSP.2018.2839022.
    [22] YU Zhengyang, TANG Jianlong, and WANG Zhao. GCPS: A CNN performance evaluation criterion for radar signal intrapulse modulation recognition[J]. IEEE Communications Letters, 2021, 25(7): 2290–2294. doi: 10.1109/LCOMM.2021.3070151.
    [23] WEI Shunjun, QU Qizhe, ZENG Xiangfeng, et al. Self-attention Bi-LSTM networks for radar signal modulation recognition[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 5160–5172. doi: 10.1109/TMTT.2021.3112199.
    [24] PAN Mian, JIANG Jie, KONG Qingpeng, et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. doi: 10.1109/LGRS.2017.2726098.
    [25] 孙殿星, 陈翔, 万建伟, 等. 基于多特征的密集假目标干扰融合识别与抑制[J]. 系统工程与电子技术, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08.

    SUN Dianxing, CHEN Xiang, WAN Jianwei, et al. Fusion identification and suppression technique against concentrated false targets jamming based on multiple features[J]. Systems Engineering and Electronics, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  101
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-11-30
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回