Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型阶数选择准则的稳健杂波边缘检测方法

金禹希 吴敏 郝程鹏 殷超然 吴永清 闫林杰

金禹希, 吴敏, 郝程鹏, 殷超然, 吴永清, 闫林杰. 基于模型阶数选择准则的稳健杂波边缘检测方法[J]. 电子与信息学报, 2024, 46(7): 2703-2711. doi: 10.11999/JEIT230999
引用本文: 金禹希, 吴敏, 郝程鹏, 殷超然, 吴永清, 闫林杰. 基于模型阶数选择准则的稳健杂波边缘检测方法[J]. 电子与信息学报, 2024, 46(7): 2703-2711. doi: 10.11999/JEIT230999
SUN Yu, YAO Peiyang, ZHANG Jieyong, FU Kai. Node Attack Strategy of Complex Networks Based on Optimization Theory[J]. Journal of Electronics & Information Technology, 2017, 39(3): 518-524. doi: 10.11999/JEIT160396
Citation: JIN Yuxi, WU Min, HAO Chengpeng, YIN Chaoran, WU Yongqing, YAN Linjie. A Robust Clutter Edge Detection Method Based on Model Order Selection Criterion[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2703-2711. doi: 10.11999/JEIT230999

基于模型阶数选择准则的稳健杂波边缘检测方法

doi: 10.11999/JEIT230999
基金项目: 国家自然科学基金(62001468, 61971412, 62071460, 62371446, 62201564)
详细信息
    作者简介:

    金禹希:女,博士生,研究方向为阵列信号处理、目标检测与估计

    吴敏:女,副研究员,研究方向为水声信号处理,目标探测与成像

    郝程鹏:男,研究员,研究方向为水声信号处理、阵列信号处理、信号检测与估计、水下无人系统设计

    殷超然:男,特别研究助理,研究方向为水声信号处理、阵列信号处理、目标检测与估计

    吴永清:男,研究员,水声定位、水下目标探测与识别

    闫林杰:女,特别研究助理,研究方向为水声信号处理、阵列信号处理、目标检测与估计

    通讯作者:

    郝程鹏 haochengp@mail.ioa.ac.cn

  • 中图分类号: TN957.51

A Robust Clutter Edge Detection Method Based on Model Order Selection Criterion

Funds: The National Natural Science Foundation (62001468, 61971412, 62071460, 62371446, 62201564)
  • 摘要: 在雷达目标自适应检测问题当中,辅助数据存在杂波边缘的情况将导致杂波协方差矩阵(CCM)的估计性能出现严重下降,极大地影响目标检测性能。为了解决这一问题,该文提出一种杂波边缘检测方法,能够对辅助数据中杂波边缘数量与位置进行自适应判别。首先,假定辅助数据中存在杂波边缘,采用模型阶数选择算法和最大似然估计方法完成杂波参数估计,其中杂波边缘位置由循环搜索方法得到。之后将杂波参数估计结果应用到检测算法中,通过广义似然比检验方法来判断杂波边缘是否存在。此外为了进一步提升算法在小样本条件下的稳健性,引入CCM的特殊结构作为先验知识,将算法推广至CCM为斜对称、谱对称以及中心对称3种结构的情况。仿真及实测数据均表明该文所提算法能够高效地识别雷达辅助数据中的杂波边缘数量和位置,先验知识的引入更能进一步改善算法在辅助数据量较小时的性能。
  • 图  1  不同协方差矩阵结构下保证收敛的最小迭代次数

    图  2  不同协方差矩阵结构的Pd, Pcc以及RMSE随CPR的变化情况(m=4)

    图  3  AIC准则下表1所示不同情况的Pd, Pcc以及RMSE随CPR的变化情况(协方差矩阵为中心对称结构)

    图  4  不同距离单元的平均能量

    图  5  距离单元-脉冲2维图

    图  6  杂波边缘数的估计结果

    图  7  杂波边缘位置的估计结果

    1  杂波分类及参数估计流程

     输入:Z, mmax, {L} ,收敛阈值 \kappa
      for m = 1,2,\cdots ,{m_{\max }}
       初始化: {t} = 0 , {L}_{j}^{(0)} = \dfrac{{{L} \times {j}}}{{m}},{j} = 1,2,\cdots ,{m} - 1
       重复迭代:
         {t} = {t} + 1
         for j = 1,2,\cdots ,m - 1
         利用式(10)估计 \hat {L}_{j}^{({t})}
         end
        利用式(2)计算当前对数似然函数 {\left( {\ln {f_1}\left( {\boldsymbol{Z}} \right)} \right)^{\left( t \right)}}
        直至满足收敛条件:
         {\left\| {{{\left( {\ln {f_1}\left( {\boldsymbol{Z}} \right)} \right)}^{\left( t \right)}} - {{\left( {\ln {f_1}\left( {\boldsymbol{Z }}\right)} \right)}^{\left( {t - 1} \right)}}} \right\|_2} \le \kappa
      end
      利用式(4)计算 \hat {m}
      利用式(12)判断环境是否均匀。
     输出: \hat {m} {\hat {\boldsymbol{\varXi}} _{m}}
    下载: 导出CSV

    表  1  仿真参数设置

    参数名称 情况1 情况2 情况3
    杂波边缘数 1 2 3
    杂波边缘位置 {{\boldsymbol{\varXi}} _m} \left[ {60} \right] \left[ {60,90} \right] \left[ {30,60,90} \right]
    下载: 导出CSV
  • [1] KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745.
    [2] HAN Sudan, YAN Linjie, ZHANG Yuxuan, et al. Adaptive radar detection and classification algorithms for multiple coherent signals[J]. IEEE Transactions on Signal Processing, 2021, 69: 560–572. doi: 10.1109/TSP.2020.3047523.
    [3] SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Maritime target detection based on radar graph data and graph convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019705. doi: 10.1109/LGRS.2021.3133473.
    [4] DE MAIO A. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. doi: 10.1109/TSP.2007.894238.
    [5] CAO Jinkun and CHEN Gang. An adaptive radar detection for the target in clutter with unknown covariance based on the PPPT[C]. The 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanjing, China, 2010: 294–297. doi: 10.1109/IHMSC.2010.173.
    [6] ASENDORF N and NADAKUDITI R R. The performance of a matched subspace detector that uses subspaces estimated from finite, noisy, training data[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 1972–1985. doi: 10.1109/TSP.2013.2241058.
    [7] ORLANDO D and RICCI G. A Rao test with enhanced selectivity properties in homogeneous scenarios[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5385–5390. doi: 10.1109/TSP.2010.2053032.
    [8] LIU Jun, LIU Weijian, HAO Chengpeng, et al. Persymmetric subspace detectors with multiple observations in homogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3276–3284. doi: 10.1109/TAES.2020.2967244.
    [9] CANDAN Ç and PASCAL F. Covariance matrix estimation of texture correlated compound-gaussian vectors for adaptive radar detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3009–3020. doi: 10.1109/TAES.2022.3221385.
    [10] KRAUT S and SCHARF L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538–2541. doi: 10.1109/78.782198.
    [11] GRECO A S, BANDIERA F, DE MAIO A, et al. Adaptive radar detection of distributed targets in partially-homogeneous noise plus subspace interference[C]. 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 2006: III-III,doi: 10.1109/ICASSP.2006.1660640.
    [12] HAO Chengpeng, ORLANDO D, MA Xiaochuan, et al. Persymmetric Rao and Wald tests for partially homogeneous environment[J]. IEEE Signal Processing Letters, 2012, 19(9): 587–590. doi: 10.1109/LSP.2012.2207891.
    [13] HAN Sudan, ADDABBO P, ORLANDO D, et al. Radar clutter classification using expectation-maximization method[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 4585–4589. doi: 10.1109/ICASSP39728.2021.9413918.
    [14] ADDABBO P, BIONDI F, ORLANDO D, et al. Radar environment classificator with clustering capabilities[C]. The 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 2021: 1860–1864. doi: 10.23919/EUSIPCO54536.2021.9616164.
    [15] WATANABE S. A widely applicable Bayesian information criterion[J]. The Journal of Machine Learning Research, 2013, 14(1): 867–897.
    [16] STOICA P and SELEN Y. Model-order selection: A review of information criterion rules[J]. IEEE Signal Processing Magazine, 2004, 21(4): 36–47. doi: 10.1109/MSP.2004.1311138.
    [17] XU D, ADDABBO P, HAO C, et al. Adaptive strategies for clutter edge detection in Radar[J]. Signal Processing, 2021, 186: 108127. doi: 10.1016/j.sigpro.2021.108127.
    [18] WANG Tianqi, XU Da, HAO Chengpeng, et al. Clutter edges detection algorithms for structured clutter covariance matrices[J]. IEEE Signal Processing Letters, 2022, 29: 642–646. doi: 10.1109/LSP.2022.3149387.
    [19] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893.
    [20] NITZBERG R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 124–127. doi: 10.1109/TAES.1980.308887.
    [21] XUE Jian, XU Shuwen, and LIU Jun. Persymmetric detection of radar targets in nonhomogeneous and Non-Gaussian Sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5103709. doi: 10.1109/TGRS.2021.3086829.
    [22] DE MAIO A, ORLANDO D, HAO Chengpeng, et al. Adaptive detection of point-like targets in spectrally symmetric interference[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3207–3220. doi: 10.1109/TSP.2016.2539140.
    [23] HAO Chengpeng, ORLANDO D, FOGLIA G, et al. Knowledge-based adaptive detection: Joint exploitation of clutter and system symmetry properties[J]. IEEE Signal Processing Letters, 2016, 23(10): 1489–1493. doi: 10.1109/LSP.2016.2601931.
    [24] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469.
    [25] BILLINGSLEY J B, FARINA A, GINI F, et al. Statistical analyses of measured radar ground clutter data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 579–593. doi: 10.1109/7.766939.
  • 期刊类型引用(17)

    1. YANG Kewei,LI Jichao,LIU Maidi,LEI Tianyang,XU Xueming,WU Hongqian,CAO Jiaping,QI Gaoxin. Complex systems and network science: a survey. Journal of Systems Engineering and Electronics. 2023(03): 543-573 . 必应学术
    2. 邓浩,武瑞梓,于卓然,李均利. 复杂网络能控性鲁棒性最优攻击序列研究. 小型微型计算机系统. 2023(08): 1842-1849 . 百度学术
    3. 郑治华,徐冰茹,罗蓉娟,张安祥. 考虑重连机制的电力物资供应链网络鲁棒性研究. 供应链管理. 2023(10): 62-71 . 百度学术
    4. 牛志强,焦雯雯. 突发事件下中蒙跨境物流网络风险评估. 综合运输. 2023(10): 139-143+181 . 百度学术
    5. 郭晶,王勇. 信息系统可靠性保障能力提升研究. 电力安全技术. 2022(07): 34-38 . 百度学术
    6. 楼洋,李均利,李升,邓浩. 复杂网络能控性鲁棒性研究进展. 自动化学报. 2022(10): 2374-2391 . 百度学术
    7. 吴嫣媛,刘向军. 考虑级联失效影响的复杂网络关键节点识别. 计算机工程与设计. 2021(04): 920-926 . 百度学术
    8. 崔慧霞,邱建龙,郭明,张润发. 有向加权供应链网络级联失效的抗毁性研究. 控制理论与应用. 2021(11): 1828-1834 . 百度学术
    9. 王丹丹. 网络级联抗毁攻击信息层次化分类仿真研究. 计算机仿真. 2020(02): 329-333 . 百度学术
    10. 冯小伟,胡聪,许畅,吴斌,倪平波,刘向军. 基于网络效率最优的关键节点识别方法. 计算机工程与设计. 2019(02): 328-335 . 百度学术
    11. 陶汝虚,吴光凤. 移动自组织网络攻击信息支援效能评估仿真. 计算机仿真. 2019(02): 263-266+446 . 百度学术
    12. 周家丞. 无线移动网络抗毁性测度指标优化修正仿真. 计算机仿真. 2019(02): 283-286+413 . 百度学术
    13. 王硕锋. 复杂条件下隐写信息网络抗毁性能检测仿真. 计算机仿真. 2019(10): 434-438 . 百度学术
    14. 王尔申,李宇,宏晨,孙庆华,刘畅. Linux软件网络的结构属性及静态稳健性. 电信科学. 2019(11): 9-18 . 百度学术
    15. 韦小铃,阳建中. 节点失效模式下复杂网络结构抗毁性优化仿真. 计算机仿真. 2018(05): 249-253 . 百度学术
    16. 吴丹,赵江. 基于复杂网络视角的网络图书广告鲁棒性分析. 浙江理工大学学报(社会科学版). 2018(02): 119-124 . 百度学术
    17. 龚小刚,叶卫,方舟,王云烨. 模拟复杂网络下子网络节点抗攻击设计. 计算机测量与控制. 2017(12): 263-266 . 百度学术

    其他类型引用(21)

  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  123
  • PDF下载量:  50
  • 被引次数: 38
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2024-01-17
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回