高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向复杂场景的多通道慢速动目标稳健检测算法

刘昆 贺雄鹏 廖桂生 余悦 王麒凯

刘昆, 贺雄鹏, 廖桂生, 余悦, 王麒凯. 面向复杂场景的多通道慢速动目标稳健检测算法[J]. 电子与信息学报, 2024, 46(5): 2018-2027. doi: 10.11999/JEIT230958
引用本文: 刘昆, 贺雄鹏, 廖桂生, 余悦, 王麒凯. 面向复杂场景的多通道慢速动目标稳健检测算法[J]. 电子与信息学报, 2024, 46(5): 2018-2027. doi: 10.11999/JEIT230958
LIU Kun, HE Xiongpeng, LIAO Guisheng, YU Yue, WANG Qikai. A Robust Multi-Channel Moving Target Detection Algorithm for Complex Scenes[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2018-2027. doi: 10.11999/JEIT230958
Citation: LIU Kun, HE Xiongpeng, LIAO Guisheng, YU Yue, WANG Qikai. A Robust Multi-Channel Moving Target Detection Algorithm for Complex Scenes[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2018-2027. doi: 10.11999/JEIT230958

面向复杂场景的多通道慢速动目标稳健检测算法

doi: 10.11999/JEIT230958
基金项目: 国家自然科学基金(62201408, 61931016),雷达信号处理国家级重点实验室支持计划项目(JKW202108)
详细信息
    作者简介:

    刘昆:男,博士生,研究方向为SAR/GMTI、高分宽幅成像等

    贺雄鹏:男,博士,副教授,研究方向为SAR、阵列信号处理等

    廖桂生:男,博士,教授,研究方向为阵列信号处理、新体制雷达等

    余悦:女,博士生,研究方向为波形分集体制雷达成像、动目标参数估计等

    王麒凯:男,硕士生,研究方向为波形分集体制雷达成像、地面运动目标检测等

    通讯作者:

    贺雄鹏 xphe@xidian.edu.cn

  • 中图分类号: TN957.51

A Robust Multi-Channel Moving Target Detection Algorithm for Complex Scenes

Funds: The National Natural Science Foundation of China (62201408, 61931016), The National Radar Signal Processing Laboratory (JKW202108)
  • 摘要: 针对鲁棒主成分分析(RPCA)算法在多通道慢速地面动目标指示(GMTI)中存在的高虚警以及对通道误差敏感问题,该文提出一种数据重构与速度合成孔径雷达(VSAR)-RPCA联合处理的方法。首先,通过样本挑选与联合像素法完成通道间数据精确重构;然后结合VSAR检测模式提出一种新的RPCA优化模型,通过采用交替投影乘子法对其进行求解得到空间频域的稀疏矩阵,进一步利用动目标与强杂波残余在空间频域通道的分布特性差异实现强杂波残余剔除与动目标检测;最后采用沿航迹干涉算法估计目标径向速度完成动目标重定位。相较于传统RPCA算法,所提算法在非理想强杂波背景下的虚警率显著降低。理论分析与实测实验验证了所提算法的有效性。
  • 图  1  多通道SAR系统对地观测几何

    图  2  本文方法处理流程

    图  3  联合像素构造示意图

    图  4  各通道SAR成像结果

    图  5  不同处理方法的干涉相位图

    图  6  动目标检测结果对比

    图  7  传统RPCA与提出方法迭代过程对比

    图  8  动目标检测、参数估计与重定位结果

    1  传统RPCA模型求解算法

     输入:观测矩阵$ {\boldsymbol{D}} $,参数$ \kappa $;
     输出:低秩矩阵$ {{\boldsymbol{A}}_{k + 1}} $,稀疏矩阵$ {{\boldsymbol{E}}_{k + 1}} $;
     初始化:$ {{\boldsymbol{Y}}_0} $=0,$ {\mu _0} \gt 0 $, $k = 0$, $\delta = 1{\rm{e}} - 6$, ${\mathrm{iter}} = 1000$;
     While ${\left\| {{\boldsymbol{D}} - {{\boldsymbol{A}}_{k + 1}} - {{\boldsymbol{E}}_{k + 1}}} \right\|_{\rm F}} > \delta $ or $k < {\text{iter}}$ do
      $ \left( {{\boldsymbol{U,\varXi ,V}}} \right) = {\rm{svd}}\left( {{\boldsymbol{D}} - {{\boldsymbol{E}}_k} + {{{{\boldsymbol{Y}}_k}} \mathord{\left/ {\vphantom {{{{\boldsymbol{Y}}_k}} \mu }} \right. } \mu }} \right) $;
      $ {{\boldsymbol{A}}_{k + 1}} = {\boldsymbol{U}}{{S}_{{1 \mathord{\left/ {\vphantom {1 \mu }} \right. } \mu }}}\left[ {\boldsymbol{\varXi }} \right]{{\boldsymbol{V}}^{\mathrm{H}}} $;
      $ {{\boldsymbol{E}}_{k + 1}} = {{S}_{{\kappa \mathord{\left/ {\vphantom {\kappa \mu }} \right. } \mu }}}\left( {{\boldsymbol{D}} - {{\boldsymbol{A}}_{k + 1}} + {{{{\boldsymbol{Y}}_k}} \mathord{\left/ {\vphantom {{{{\boldsymbol{Y}}_k}} \mu }} \right. } \mu }} \right) $;
      $ {{\boldsymbol{Y}}_{k + 1}} = {{\boldsymbol{Y}}_k} + \mu \left( {{\boldsymbol{D - }}{{\boldsymbol{A}}_{k + 1}}{\boldsymbol{ - }}{{\boldsymbol{E}}_{k + 1}}} \right) $;
      $k = k + 1$;
     End while
    下载: 导出CSV

    2  所提RPCA优化模型求解流程

     输入:观测矩阵$ {\boldsymbol{D}} $,参数$ \lambda $;
     输出:低秩矩阵$ {{\boldsymbol{A}}_{k + 1}} $,稀疏矩阵$ {F}{\left( {\boldsymbol{E}} \right)_{k + 1}} $;
     初始化:$ {{\boldsymbol{Y}}_0} $=0; $ {\mu _0} \gt 0 $, $k = 0$, $\delta = 1{\rm{e}} - 6$, ${\mathrm{iter}} = 1000$;
     While ${\left\| {{\boldsymbol{D}} - {{\boldsymbol{A}}_{k + 1}} - {{\boldsymbol{E}}_{k + 1}}} \right\|_{\rm F}} > \delta $ or $k < {\mathrm{iter}}$ do
      $ \left( {{\boldsymbol{U,\varSigma ,V}}} \right) = {\rm{svd}}\left( {{\boldsymbol{D}} - {{\boldsymbol{E}}_k} + {{{{\boldsymbol{Y}}_k}} \mathord{\left/ {\vphantom {{{{\boldsymbol{Y}}_k}} \mu }} \right. } \mu }} \right) $;
      $ {{\boldsymbol{A}}_{k + 1}} = {\boldsymbol{U}}{S_{{1 \mathord{\left/ {\vphantom {1 \mu }} \right. } \mu }}}\left[ {\boldsymbol{\varXi }} \right]{{\boldsymbol{V}}^{\mathrm{H}}} $;
      $ {F}{\left( {\boldsymbol{E}} \right)_{k + 1}} = {S_{{\kappa \mathord{\left/ {\vphantom {\kappa \mu }} \right. } \mu }}}\left( {{F}\left( {{\boldsymbol{D}} - {{\boldsymbol{A}}_{k + 1}} + {{{{\boldsymbol{Y}}_k}} \mathord{\left/ {\vphantom {{{{\boldsymbol{Y}}_k}} \mu }} \right. } \mu }} \right)} \right) $;
      ${{\boldsymbol{E}}_{k + 1}} = {{F}^{ - 1}}\left( {{F}{{\left( {\boldsymbol{E}} \right)}_{k + 1}}} \right)$;
      $ {{\boldsymbol{Y}}_{k + 1}} = {{\boldsymbol{Y}}_k} + \mu \left( {{\boldsymbol{D}} - {{\boldsymbol{A}}_{k + 1}} - {{\boldsymbol{E}}_{k + 1}}} \right) $;
      $k = k + 1$;
     End while
    下载: 导出CSV

    表  1  多通道SAR系统参数

    参数
    载频(GHz)8.85
    带宽(MHz)40
    采样频率(MHz)60
    脉冲重复频率(Hz)1000
    通道间距(m)0.559
    平台速度(m/s)115
    通道数目(个)3
    下载: 导出CSV

    表  2  不同处理方法通道相关性

    方法相关性
    文献[31]算法0.80
    数据重构0.90
    本文算法0.94
    下载: 导出CSV

    表  3  不同目标检测算法耗时对比

    方法耗时(s)
    DPCA0.007
    RPCA4.970
    VSAR-RPCA5.300
    下载: 导出CSV
  • [1] HUANG Penghui, XIA Xianggen, WANG Lingyu, et al. Imaging and relocation for extended ground moving targets in multichannel SAR-GMTI systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214024. doi: 10.1109/TGRS.2021.3106906.
    [2] HE Xiongpeng, LIAO Guisheng, ZHU Shengqi, et al. Range-ambiguous clutter suppression for the SAR-GMTI system based on extended azimuth phase coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8147–8162. doi: 10.1109/TGRS.2020.2987630.
    [3] HE Xiongpeng, YU Yue, GUO Yifan, et al. Ground moving target detection with nonuniform subpulse coding in SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200718. doi: 10.1109/TGRS.2022.3231914.
    [4] YANG Jungang, HUANG Xiaotao, JIN Tian, et al. New approach for SAR imaging of ground moving targets based on a keystone transform[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 829–833. doi: 10.1109/LGRS.2011.2118739.
    [5] XU Ruipeng, QIU Xiaolan, HU Donghui, et al. A novel single-channel SAR-GMTI method based on defocusing shifted difference[C]. The 2nd International Conference on Signal Processing Systems, Dalian, China, 2010: V3-83–V3-86. doi: 10.1109/ICSPS.2010.5555697.
    [6] LÜ Gaohuan, WANG Junfeng, and LIU Xingzhao. Ground moving target indication in SAR images by symmetric defocusing[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 241–245. doi: 10.1109/LGRS.2012.2200232.
    [7] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation via time-Doppler chirp-varying approach for single-channel airborne SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4367–4383. doi: 10.1109/TGRS.2017.2691742.
    [8] WU Jiaye, LIU Peng, ZHAO Bingji, et al. Single channel SAR ground moving target detection algorithm based on subband interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503805. doi: 10.1109/LGRS.2022.3143874.
    [9] CHAPIN E and CHEN C W. Airborne along-track interferometry for GMTI[J]. IEEE Aerospace and Electronic Systems Magazine, 2009, 24(5): 13–18. doi: 10.1109/MAES.2009.5109948.
    [10] LIGHTSTONE L, FAUBERT D, and REMPEL G. Multiple phase centre DPCA for airborne radar[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 36–40. doi: 10.1109/NRC.1991.114720.
    [11] 郑明洁, 杨汝良. 一种改进的DPCA运动目标检测方法[J]. 电子学报, 2004, 32(9): 1429–1432. doi: 10.3321/j.issn:0372-2112.2004.09.005.

    ZHENG Mingjie and YANG Ruliang. An improved DPCA moving targets detecting algorithm[J]. Acta Electronica Sinica, 2004, 32(9): 1429–1432. doi: 10.3321/j.issn:0372-2112.2004.09.005.
    [12] ZHANG Sheng, ZHOU Fang, SUN Guangcai, et al. A new SAR–GMTI high-accuracy focusing and relocation method using instantaneous interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5564–5577. doi: 10.1109/TGRS.2016.2569259.
    [13] SUWA K, YAMAMOTO K, TSUCHIDA M, et al. Image-based target detection and radial velocity estimation methods for multichannel SAR-GMTI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1325–1338. doi: 10.1109/TGRS.2016.2622712.
    [14] LIU Qinghua, WANG Junfeng, and LIU Xingzhao. SAR-GMTI based on ATI with normalized amplitude weighted phase difference[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 3364–3367. doi: 10.1109/IGARSS47720.2021.9553369.
    [15] WANG Zhihao, WANG Yongliang, XING Mengdao, et al. A novel two-step scheme based on joint GO-DPCA and local STAP in image domain for multichannel SAR-GMTI[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8259–8272. doi: 10.1109/JSTARS.2021.3104595.
    [16] ENDER J H G. Space-time adaptive processing for synthetic aperture radar[C]. IEE Colloquium on Space-Time Adaptive Processing, London, UK, 1998. doi: 10.1049/ic:19980244.
    [17] CERUTTI-MAORI D and SIKANETA I. Optimum GMTI processing for space-based SAR/GMTI systems-simulation results[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [18] CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/tgrs.2012.2201260.
    [19] SUO Zhiyong, LI Zhenfang, and BAO Zheng. Multi-channel SAR-GMTI method robust to coregistration error of SAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2035–2043. doi: 10.1109/TAES.2010.5595612.
    [20] CHEN Zhanye, ZHOU Shuwei, WANG Xing, et al. Single range data-based clutter suppression method for multichannel SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4012905. doi: 10.1109/LGRS.2021.3072411.
    [21] YAN He, WANG R, LI Fei, et al. Ground moving target extraction in a multichannel wide-area surveillance SAR/GMTI system via the relaxed PCP[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 617–621. doi: 10.1109/LGRS.2012.2216248.
    [22] YANG Dong, YANG Xi, LIAO Guisheng, et al. Strong clutter suppression via RPCA in multichannel SAR/GMTI system[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2237–2241. doi: 10.1109/LGRS.2015.2461654.
    [23] 傅东宁, 廖桂生, 黄岩, 等. 基于多通道SAR系统的ATI-RPCA地面动目标指示方法[J]. 系统工程与电子技术, 2021, 43(1): 48–54. doi: 10.3969/j.issn.1001-506X.2021.01.07.

    FU Dongning, LIAO Guisheng, HUANG Yan, et al. ATI-RPCA GMTI method based on multi-channel SAR system[J]. Systems Engineering and Electronics, 2021, 43(1): 48–54. doi: 10.3969/j.issn.1001-506X.2021.01.07.
    [24] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243.
    [25] GUO Yifan, LIAO Guisheng, LI Jun, et al. A novel moving target detection method based on RPCA for SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6677–6690. doi: 10.1109/TGRS.2020.2978496.
    [26] SHU Yuxiang, LIAO Guisheng, and YANG Zhiwei. Robust radial velocity estimation of moving targets based on adaptive data reconstruction and subspace projection algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1101–1105. doi: 10.1109/LGRS.2013.2287285.
    [27] HU Yuanlin, ZHANG Xiaoling, and ZHAN Xu. Multiple-overlaid-targets separation and high precision velocity estimation based on Bayesian criterion in VSAR system[C]. IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 3145–3148. doi: 10.1109/IGARSS47720.2021.9553402.
    [28] YANG Yongpeng, YANG Zhenzhen, and LI Jianlin. Novel RPCA with nonconvex logarithm and truncated fraction norms for moving object detection[J]. Digital Signal Processing, 2023, 133: 103892. doi: 10.1016/j.dsp.2022.103892.
    [29] 张学攀, 廖桂生, 朱圣棋, 等. 距离频率ML方法无模糊估计动目标径向速度[J]. 西安电子科技大学学报: 自然科学版, 2014, 41(5): 42–47,104. doi: 10.3969/j.issn.1001-2400.2014.05.09.

    ZHANG Xuepan, LIAO Guisheng, ZHU Shengqi, et al. Unambiguous estimation of the radial velocity of a moving target by the range frequency maximum likelihood method[J]. Journal of Xidian University, 2014, 41(5): 42–47,104. doi: 10.3969/j.issn.1001-2400.2014.05.09.
    [30] CHEN Zhaoyan and WANG Tong. Unambiguous across-track velocity estimation of moving targets for multichannel synthetic aperture radar-ground moving target indication systems[J]. IET Signal Processing, 2014, 8(9): 950–957. doi: 10.1049/iet-spr.2013.0423.
    [31] WANG Chenghao, LIAO Guisheng, and ZHANG Qingjun. First spaceborne SAR-GMTI experimental results for the Chinese Gaofen-3 dual-channel SAR sensor[J]. Sensors, 2017, 17(11): 2683. doi: 10.3390/s17112683.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  56
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-05-06
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回