高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完美信道状态信息下分布式智能反射面辅助安全通信研究

冯友宏 张彦峨 张玉峰 董国青 张然 王晔 徐龙珠

冯友宏, 张彦峨, 张玉峰, 董国青, 张然, 王晔, 徐龙珠. 非完美信道状态信息下分布式智能反射面辅助安全通信研究[J]. 电子与信息学报, 2024, 46(7): 2860-2868. doi: 10.11999/JEIT230942
引用本文: 冯友宏, 张彦峨, 张玉峰, 董国青, 张然, 王晔, 徐龙珠. 非完美信道状态信息下分布式智能反射面辅助安全通信研究[J]. 电子与信息学报, 2024, 46(7): 2860-2868. doi: 10.11999/JEIT230942
FENG Youhong, ZHANG Yane, ZHANG Yufeng, DONG Guoqing, ZHANG Ran, WANG Ye, XU Longzhu. Research on Distributed Reconfigurable Intelligent Surfaces-Assisted Security Communication under Imperfect Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2860-2868. doi: 10.11999/JEIT230942
Citation: FENG Youhong, ZHANG Yane, ZHANG Yufeng, DONG Guoqing, ZHANG Ran, WANG Ye, XU Longzhu. Research on Distributed Reconfigurable Intelligent Surfaces-Assisted Security Communication under Imperfect Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2860-2868. doi: 10.11999/JEIT230942

非完美信道状态信息下分布式智能反射面辅助安全通信研究

doi: 10.11999/JEIT230942
基金项目: 国家自然科学基金(62071005),东南大学移动通信国家重点实验室开放研究基金(2023D14),安徽省自然科学基金(2008085MF181),安徽高校协同创新项目(GXXT-2023-109),毫米波全国重点实验室开放研究基金(K202426),安徽省高校优秀拔尖人才培育项目(gxyq2022117)
详细信息
    作者简介:

    冯友宏:男,教授,博士生导师,研究方向为5G/6G移动通信、智能通信、网络安全

    张彦峨:女,硕士生,研究方向为5G/6G移动通信、信息论安全

    张玉峰:男,博士生,研究方向为5G/6G移动通信、智能通信

    董国青:女,博士生,研究方向为5G/6G移动通信、智能通信

    张然:女,讲师,研究方向为智能反射面,毫米波通信

    王晔:男,讲师,研究生导师,研究方向为无人机通信

    徐龙珠:女,硕士生,研究方向为5G/6G移动通信、信息论安全

    通讯作者:

    冯友宏 yhfeng@ahnu.edu.cn

  • 中图分类号: TN92

Research on Distributed Reconfigurable Intelligent Surfaces-Assisted Security Communication under Imperfect Channel State Information

Funds: The National Natural Science Foundation of China (62071005), The open research fund of National Mobile Communications Research Laboratory, Southeast University (2023D14), The Natural Science Foundation of Anhui Province (2008085MF1811), The University Synergy Innovation Program of Anhui Province (GXXT-2023-109), The open research fund of State Key Laboratory of Millimeter Waves (K202426), The Excellent Young Talents Support Program in Colleges and Universities (gxyq2022117)
  • 摘要: 针对非完美信道状态信息(CSI)下分布式智能反射面(RIS)安全通信问题,该文构建基于基站波束成形、人工噪声(AN)和RISs相移的联合优化问题,并提出相对应优化方法和1维线性搜索的有效算法来求解所构建的非凸优化方程。仿真结果表明:相对于随机相位、无AN辅助的安全传输策略,所提方法在非完美CSI场景可取得更高的安全传输速率;在总反射单元数目固定情况下,分布单元数目越多,所提算法优越性越明显;进一步,所提算法具有更强的鲁棒性,即本策略能更好地适应信道不确定性。
  • 图  1  非完美CSI下分布式RIS辅助无线通信系统模型

    图  2  系统的安全速率与算法迭代次数的关系

    图  3  系统的安全速率与基站发射功率的关系

    图  4  系统的安全速率与RISs总反射单元数的关系

    图  5  系统的安全速率与系统CSI不确定性关系

    图  6  系统的安全速率与系统CSI不确定性关系

    1  AO整体算法流程

     输入:迭代次数$ r = 0 $,初始值${{\boldsymbol{W}}^0},{{\boldsymbol{Z}}^0},{{\boldsymbol{\varTheta }}^0} $, $ {\alpha ^0},{\beta ^0} $,容错误差
     $\varepsilon \gt 0 $;
     步骤1 循环执行操作:
     (1)固定变量${\boldsymbol{W}},{\boldsymbol{Z}},{\boldsymbol{\varTheta }},\beta $,在问题${\text{P}}6 $中对$\alpha $执行一维线性搜索;
     (2)固定变量$ {\boldsymbol{\varTheta}} ,\alpha $,使用CVX工具箱求解问题${\text{P}}8 $中的参数
     ${\boldsymbol{W}},{\boldsymbol{Z}},\beta $;
     (3)固定变量${\boldsymbol{W}},{\boldsymbol{Z}},\alpha ,\beta $,对问题$ {\text{P}}10 $采用PCCP方法获得${\boldsymbol{\varTheta }} $;
     直到收敛:$\dfrac{{\left| {\bar R_{\mathrm{s}}^r - \bar R_{\mathrm{s}}^{r - 1}} \right|}}{{R_{\mathrm{s}}^r}} \le \varepsilon $;
     输出:参数${\boldsymbol{W}},{\boldsymbol{Z}},{\boldsymbol{\varTheta }},\alpha ,\beta $。
    下载: 导出CSV

    表  1  参数设置

    参数变量 对应数值
    带宽 $ B = 1\;{\mathrm{MHz }}$
    噪声功率谱密度 $ \sigma _k^2 = \sigma _{\rm e}^2 = - 174\;{\mathrm{dBm}}/{\mathrm{Hz}} $
    容错误差 $ \varepsilon = {10^{ - 6}} $
    路径损耗指数 $ {\alpha _{{\mathrm{BI}}}} = {\alpha _{{\mathrm{IRS}}}} = 2.2 $
    BS最大发射功率 $ {P_{\max }} = 10\;{\mathrm{dBm}} $
    基站天线数 $ {N_t} = 4 $
    总RIS单元数 $ M = 24 $
    CSI不确定程度 $ \delta _{\rm u}^{} = 0.2,\delta _{\rm e}^{} = 0.2 $
    下载: 导出CSV
  • [1] CHRAITI M, GHRAYEB A, and ASSI C. Achieving full secure degrees-of-freedom for the MISO wiretap channel with an unknown eavesdropper[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7066–7079. doi: 10.1109/TWC.2017.2738638.
    [2] HE Xiang and YENER A. MIMO wiretap channels with unknown and varying eavesdropper channel states[J]. IEEE Transactions on Information Theory, 2014, 60(11): 6844–6869. doi: 10.1109/TIT.2014.2359192.
    [3] 冯友宏, 张彦峨, 董国青. 基于分布式智能反射面的物理层安全通信研究[J]. 电子与信息学报, 2023, 45(6): 2081–2088. doi: 10.11999/JEIT220659.

    FENG Youhong, ZHANG Yan’e, and DONG Guoqing. Research on physical layer security communication based on distributed intelligent reflective surface[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2081–2088. doi: 10.11999/JEIT220659.
    [4] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [5] LV Lu, WU Qingqing, LI Zan, et al. Covert communication in intelligent reflecting surface-assisted NOMA systems: Design, analysis, and optimization[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1735–1750. doi: 10.1109/TWC.2021.3106346.
    [6] SHEN Hong, XU Wei, GONG Shulei, et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019, 23(9): 1488–1492. doi: 10.1109/LCOMM.2019.2924214.
    [7] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [8] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721.
    [9] QIAO Jingping and ALOUINI M S. Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1743–1747. doi: 10.1109/LWC.2020.3003400.
    [10] CHU Zheng, HAO Wanming, XIAO Pei, et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020, 9(1): 108–112. doi: 10.1109/LWC.2019.2943559.
    [11] MEI Weidong and ZHANG Rui. Multi-beam multi-hop routing for intelligent reflecting surfaces aided massive MIMO[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1897–1912. doi: 10.1109/TWC.2021.3108020.
    [12] XIU Yue, ZHAO Jun, YUEN C, et al. Secure beamforming for multiple intelligent reflecting surfaces aided mmWave systems[J]. IEEE Communications Letters, 2021, 25(2): 417–421. doi: 10.1109/LCOMM.2020.3028135.
    [13] YU Xianghao, XU Dongfang, and SCHOBER R. Enabling secure wireless communications via intelligent reflecting surfaces[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9014322.
    [14] WANG Huiming, BAI Jiale, and DONG Limeng. Intelligent reflecting surfaces assisted secure transmission without eavesdropper’s CSI[J]. IEEE Signal Processing Letters, 2020, 27: 1300–1304. doi: 10.1109/LSP.2020.3010170.
    [15] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043.
    [16] YANG Liang, YANG Jinxia, XIE Wenwu, et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12296–12300. doi: 10.1109/TVT.2020.3007521.
    [17] HONG Sheng, PAN Cunhua, REN Hong, et al. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2487–2501. doi: 10.1109/TWC.2020.3042828.
    [18] XU Peng, CHEN Gaojie, PAN Gaofeng, et al. Ergodic secrecy rate of RIS-assisted communication systems in the presence of discrete phase shifts and multiple eavesdroppers[J]. IEEE Wireless Communications Letters, 2021, 10(3): 629–633. doi: 10.1109/LWC.2020.3044178.
    [19] YANG Songjie, LYU Wanting, XIU Yue, et al. Active 3D Double-RIS-Aided multi-user communications: Two-timescale-based separate channel estimation via Bayesian learning[J]. IEEE Transactions on Communications, 2023, 71(6): 3605–3620. doi: 10.1109/TCOMM.2023.3265115.
    [20] ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [21] HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534.
    [22] YOON S H, LIM B, VU M, et al. Joint user selection and beamforming design for multi-IRS aided internet-of-things networks[J]. IEEE Transactions on Vehicular Technology, 2023, doi: 10.1109/TVT.2023.3313606.
    [23] MEI Weidong and ZHANG Rui. Performance analysis and user association optimization for wireless network aided by multiple intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(9): 6296–6312. doi: 10.1109/TCOMM.2021.3087620.
    [24] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  112
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2024-01-25
  • 网络出版日期:  2024-02-07
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回