高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机辅助空中计算的轨迹和功率联合优化方法

李松 李佳琦 王博文 陈瑞瑞 孙彦景 张晓光

李松, 李佳琦, 王博文, 陈瑞瑞, 孙彦景, 张晓光. 无人机辅助空中计算的轨迹和功率联合优化方法[J]. 电子与信息学报, 2024, 46(6): 2480-2487. doi: 10.11999/JEIT230917
引用本文: 李松, 李佳琦, 王博文, 陈瑞瑞, 孙彦景, 张晓光. 无人机辅助空中计算的轨迹和功率联合优化方法[J]. 电子与信息学报, 2024, 46(6): 2480-2487. doi: 10.11999/JEIT230917
LI Song, LI Jiaqi, WANG Bowen, CHEN Ruirui, SUN Yanjing, ZHANG Xiaoguang. A Joint Optimization Method for Trajectory and Power of Unmanned Aerial Vehicle assisted Over-the-Air Computation[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2480-2487. doi: 10.11999/JEIT230917
Citation: LI Song, LI Jiaqi, WANG Bowen, CHEN Ruirui, SUN Yanjing, ZHANG Xiaoguang. A Joint Optimization Method for Trajectory and Power of Unmanned Aerial Vehicle assisted Over-the-Air Computation[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2480-2487. doi: 10.11999/JEIT230917

无人机辅助空中计算的轨迹和功率联合优化方法

doi: 10.11999/JEIT230917
基金项目: 国家自然科学基金(62071472, 62101556),中央高校基本科研业务费项目(2020ZDPYMS26),江苏省自然科学基金(BK20200650, BK20210489),江苏省未来网络科研基金(FNSRFP-2021-YB-12)
详细信息
    作者简介:

    李松:男,副教授,硕士生导师,研究方向为工业物联网、边缘计算等

    李佳琦:男,硕士生,研究方向为空中计算

    王博文:男,副教授,硕士生导师,研究方向为地下空间无人机应急网络、工业物联网、社交物联网

    陈瑞瑞:男,讲师,硕士生导师,研究方向为涡旋电磁波通信、无人机通信、智能通信

    孙彦景:男,教授,博士生导师,研究方向为无线通信与组网、工业物联网

    张晓光:女,教授,硕士生导师,研究方向为应急通信、智能感知与精确定位、机器故障诊断

    通讯作者:

    张晓光 xiaoguangzh168@cumt.edu.cn

  • 中图分类号: TN929

A Joint Optimization Method for Trajectory and Power of Unmanned Aerial Vehicle assisted Over-the-Air Computation

Funds: The National Natural Science Foundation of China (62071472, 62101556), The Fundamental Research Funds for the Central Universities (2020ZDPYMS26), The Natural Science Foundation of Jiangsu Province of China (BK20200650, BK20210489), Future Network Research Foundation of Jiangsu Province (FNSRFP-2021-YB-12)
  • 摘要: 无人机(UAV)辅助的空中计算(AirComp)系统为大范围、分布式数据的快速聚合提供了有效的解决方法。该文研究了通过无人机辅助空中计算系统联合轨迹规划与功率优化方法。UAV作为移动基站,通过调整其运动轨迹和地面传感器节点发射功率,实现AirComp系统聚合数据均方误差的最优化。在UAV轨迹、传感器功率限制下,联合优化UAV轨迹、去噪因子和传感器功率,使时间平均均方误差最小化。基于块坐标下降和逐次凸逼近方法,提出无人机飞行轨迹与功率联合优化算法,并通过仿真验证了所提算法的性能。
  • 图  1  无人机基站AirComp系统模型

    图  2  时间平均均方方差迭代图

    图  3  不同飞行时间的UAV飞行轨迹

    图  4  时间平均MSE与飞行时间的关系

    图  5  时间平均MSE与噪声功率的关系

    图  6  时间平均MSE与信道估计误差的关系

    算法1 无人机飞行轨迹与功率优化算法
     定义无人机飞行时间N;传感器的最大发射功率$\{ {P_k}[n]\} $;传感
     器的平均发射功率$\{ \overline {{P_k}} [n]\} $;收敛精度$\xi $;环境参数uv;误差
     幅度参数A
     (1) 定义$r = 0$,${R^0} = 1$;初始化无人机的飞行轨迹$ \{ {{\boldsymbol{q}}^0}[n]\} $;传
     感器初始发射功率$\{ p_k^0[n]\} $;
     (2) 循环
     (3) r=r+1
     (4) 利用$ \{ {{\boldsymbol{q}}^{r - 1}}[n]\} $和$ \{ p_k^{r - 1}[n]\} $,根据式(16)求解$\{ {\eta ^r}[n]\} $并且
     更新$\{ \eta [n]\} $;
     (5) 利用$ \{ {{\boldsymbol{q}}^{r - 1}}[n]\} $和$\{ {\eta ^r}[n]\} $,根据式(18)求解$ \{ p_k^r[n]\} $并且更
     新$ \{ p_k^{}[n]\} $;
     (6) 利用$\{ {\eta ^r}[n]\} $和$ \{ p_k^r[n]\} $,根据式(26)求解$ \{ {{\boldsymbol{q}}^r}[n]\} $并且更新
     $ \{ {\boldsymbol{q}}[n]\} $;
     (7) 根据式(10)和式(11)计算${\overline {{\text{MSE}}} ^r}$,并赋值${R^r} = {\overline {{\text{MSE}}} ^r}$;
     (8) 若${{({R^r} - {R^{r - 1}})} \mathord{\left/ {\vphantom {{({R^r} - {R^{r - 1}})} {{R^r}}}} \right. } {{R^r}}} \le \xi $,认为算法收敛,退出循环;
     (9) 问题得以求解得到次优解:去噪因子$\{ \eta [n]\} $,传感器发射功
     率$\{ p_k^{}[n]\} $和UAV最优飞行轨迹$\{ {\boldsymbol{q}}[n]\} $;
    下载: 导出CSV
  • [1] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10. 11999/JEIT210789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [2] ZHAN Cheng and ZENG Yong. Completion time minimization for multi-UAV-enabled data collection[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4859–4872. doi: 10.1109/TWC.2019.2930190.
    [3] LI Mushu, CHENG Nan, GAO Jie, et al. Energy-efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3424–3438. doi: 10.1109/TVT.2020.2968343.
    [4] CHAKARESKI J, NAQVI S, MASTRONARDE N, et al. An energy efficient framework for UAV-assisted millimeter wave 5G heterogeneous cellular networks[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(1): 37–44. doi: 10.1109/TGCN.2019.2892141.
    [5] SHEN Chao, CHANG T H, GONG Jie, et al. Multi-UAV interference coordination via joint trajectory and power control[J]. IEEE Transactions on Signal Processing, 2020, 68: 843–858. doi: 10.1109/TSP.2020.2967146.
    [6] SAMIR M, SHARAFEDDINE S, ASSI C M, et al. UAV trajectory planning for data collection from time-constrained IoT devices[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 34–46. doi: 10.1109/TWC.2019.2940447.
    [7] ZHU Guangxu, XU Jie, HUANG Kaibin, et al. Over-the-air computing for wireless data aggregation in massive IoT[J]. IEEE Wireless Communications, 2021, 28(4): 57–65. doi: 10.1109/MWC.011.2000467.
    [8] GOLDENBAUM M, BOCHE H, and STAŃCZAK S. Harnessing interference for analog function computation in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 4893–4906. doi: 10.1109/TSP.2013.2272921.
    [9] CAO Xiaowen, ZHU Guangxu, XU Jie, et al. Optimized power control for over-the-air computation in fading channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7498–7513. doi: 10.1109/TWC.2020.3012287.
    [10] ZHU Guangxu and HUANG Kaibin. MIMO over-the-air computation for high-mobility multimodal sensing[J]. IEEE Internet of Things Journal, 2019, 6(4): 6089–6103. doi: 10.1109/JIOT.2018.2871070.
    [11] JIANG Miao, LI Yiqing, ZHANG Guangchi, et al. Joint beamforming optimization in multi-relay assisted MIMO over-the-air computation for multi-modal sensing data aggregation[J]. IEEE Communications Letters, 2021, 25(12): 3937–3941. doi: 10.1109/LCOMM.2021.3120182.
    [12] ZHAI Xiongfei, CHEN Xihan, XU Jie, et al. Hybrid beamforming for massive MIMO over-the-air computation[J]. IEEE Transactions on Communications, 2021, 69(4): 2737–2751. doi: 10.1109/TCOMM.2021.3051397.
    [13] YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi: 10.1109/TWC.2019.2961673.
    [14] YOO T and GOLDSMITH A. Capacity and power allocation for fading MIMO channels with channel estimation error[J]. IEEE Transactions on Information Theory, 2006, 52(5): 2203–2214. doi: 10.1109/TIT.2006.872984.
    [15] YU D, PARK S H, SIMEONE O, et al. Optimizing over-the-air computation in IRS-aided C-RAN systems[C]. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Atlanta, USA, 2020: 1–5. doi: 10.1109/SPAWC48557.2020.9154243.
    [16] JUNG H and KO S W. Performance analysis of UAV-enabled over-the-air computation under imperfect channel estimation[J]. IEEE Wireless Communications Letters, 2022, 11(3): 438–442. doi: 10.1109/LWC.2021.3130002.
    [17] ZHU Guangxu, DU Yuqing, GÜNDÜZ D, et al. One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 2120–2135. doi: 10.1109/TWC.2020.3039309.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  125
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2023-12-05
  • 网络出版日期:  2023-12-13
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回