高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电晶体的声波激励小型化低频天线技术研究

扶逸凡 徐国凯 朱祥维 肖绍球 张靖浩 钟玖平 李婉清 李君儒 王宇航 王子业 李杜

扶逸凡, 徐国凯, 朱祥维, 肖绍球, 张靖浩, 钟玖平, 李婉清, 李君儒, 王宇航, 王子业, 李杜. 基于压电晶体的声波激励小型化低频天线技术研究[J]. 电子与信息学报, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
引用本文: 扶逸凡, 徐国凯, 朱祥维, 肖绍球, 张靖浩, 钟玖平, 李婉清, 李君儒, 王宇航, 王子业, 李杜. 基于压电晶体的声波激励小型化低频天线技术研究[J]. 电子与信息学报, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
Citation: FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914

基于压电晶体的声波激励小型化低频天线技术研究

doi: 10.11999/JEIT230914
基金项目: 国家重点研发计划(2021YFA0716500),南方海洋科学与工程广东省实验室(珠海)资助项目(SML2021SP408),深圳市科创委基础研究重点项目(2020N259),深圳市科技计划(GXWD20201231165807008, 20200830225317001)
详细信息
    作者简介:

    扶逸凡:男,博士生,研究方向为新型导航通信系统设计

    徐国凯:男,博士生,研究方向为新型电小天线设计

    朱祥维:男,博士,教授,研究方向为导航与通信技术

    肖绍球:男,博士,教授,研究方向为电磁辐射与散射

    张靖浩:男,硕士生,研究方向为声波激励新原理天线

    钟玖平:男,博士,副教授,研究方向为光电晶体生长

    李婉清:女,博士后,研究方向为声波激励新原理天线、计算电磁学

    李君儒:男,博士后,研究方向为新型体声波器件与磁弹耦合

    王宇航:男,博士生,研究方向为射频与智能感知

    王子业:男,博士生,研究方向为新型体声波器件与磁弹耦合

    李杜:男,博士,副研究员,研究方向为微波与电磁场理论

    通讯作者:

    朱祥维  zhuxw666@mail.sysu.edu.cn

  • 中图分类号: TN822

Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency

Funds: The National Key Research and Development Program of China (2021YFA0716500), The Project supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (SML2021SP408), The Key Basic Research Projects of Shenzhen Science and Technology Commission (2020N259), Shenzhen Science and Technology Program (GXWD20201231165807008, 20200830225317001)
  • 摘要: 水下信息实时传输的需求与日俱增,水声通信和光通信等传统通信手段在传输安全性与稳定性方面具有先天难以弥补的劣势,且在传输速率方面难以形成突破,因此亟待对新技术进行研究。为解决此问题,近年一些学者提出一种新机理、新材料和新工艺的小型化天线,有望实现低频天线在尺寸和性能上的跨越,实现水下通信技术的变革。该文对此类声波激励小型化天线进行研究。首先阐述并建立了天线辐射机理及理论模型,分析了不同材料参数对天线性能的影响;然后根据模型参数设计加工了基于铌酸锂(LiNbO3)晶体的压电型声波激励天线样机,实验结果表明在40.83 kHz谐振频率处,与同尺寸单极子天线相比,其接收电压峰值为后者的22倍,辐射效率为400多倍;最后对天线进行了方位测试和辐射效率计算。上述结果表明:基于压电晶体的声波激励天线技术在低频段小型化、机动化水下无线通信设备的应用中具有巨大潜力。
  • 图  1  压电型声波激励天线的工作原理

    图  2  模型示意图

    图  3  Z切型,长度方向激励下的电势(箭头表示电场方向)和应力分布

    图  4  Y36°切型,长度方向激励下的电势(箭头表示电场方向)和应力分布

    图  5  输入阻抗随长度和宽度的变化

    图  6  天线加工

    图  7  快速扫描测试连接框图

    图  8  实验室测试场景

    图  9  锁相放大器的接收信号幅度

    图  10  各测试点的接收电压扫频图

    图  11  接收电压幅值随距离的变化

    图  12  测试的接收电压归一化近场方向图

    图  13  谐振频率附近的扫频特性

  • [1] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398–402. doi: 10.1109/LAWP.2020.2968604
    [2] 张锋, 孙发晓, 渠晓东, 等. 基于旋转永磁体的低频通信技术研究[J]. 电子与信息学报, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274

    ZHANG Feng, SUN Faxiao, QU Xiaodong, et al. Research on low frequency communication technology based on rotating permanent magnet[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274
    [3] 马帅, 高梦迪, 曹世昱, 等. 超低频天线最优波束成形设计研究[J]. 电子与信息学报, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119

    MA Shuai, GAO Mengdi, CAO Shiyu, et al. Research on optimal beamforming design of ultra-low frequency antenna[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119
    [4] GLICKSTEIN J S, LIANG Jifu, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access, 2020, 8: 2455–2471. doi: 10.1109/ACCESS.2019.2961708
    [5] CHEN Huaihao, LIANG Xianfeng, DONG Cunzheng, et al. Ultra-compact mechanical antennas[J]. Applied Physics Letters, 2020, 117(17): 170501. doi: 10.1063/5.0025362
    [6] 丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71–73.

    DING Hong. DARPA mechanical antenna project may be raised military communication revolution[J]. Conmilit, 2017(4): 71–73.
    [7] 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792

    CUI Yong, WU Ming, SONG Xiao, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [8] LI Wanqing, LI Du, ZHOU Kaixiang, et al. A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 263–274. doi: 10.1109/TAP.2022.3220663
    [9] 周凯翔, 袁雪林, 李杜, 等. 基于压电单晶的声波激励新机理小型化天线技术研究[C]. 2021年全国天线年会论文集, 宁波, 2021: 1974–1977.

    ZHOU Kaixiang, YUAN Xuelin, LI Du, et al. A study of antenna miniaturization technology on the new mechanism of acoustic excitation based on piezoelectric single crystal[C]. National Conference on Antennas 2021, Ningbo, 2021: 1974–1977.
    [10] GAO Zhaodong, SU Ming, LIU Yuanan, et al. Field-based circuit model of acoustically actuated piezoelectric antenna for characteristic evaluation and array applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11422–11433. doi: 10.1109/TAP.2022.3209626
    [11] ANGILELLA A J, DAVIS N K, and MCMICHAEL I T. Electrically small piezocomposite strain antennas[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 7923–7933. doi: 10.1109/TAP.2022.3184485
    [12] 张勇, 周洪澄, 艾竞, 等. 基于声波驱动的低频小型化压电天线设计[C]. 2021年全国天线年会论文集, 宁波, 2021: 1986–1988.

    ZHANG Yong, ZHOU Hongcheng, AI Jing, et al. Design of low-frequency miniaturized antenna based on acoustically actuated[C]. National Conference on Antennas 2021, Ningbo, China, 2021: 1986–1988.
    [13] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. Journal of the American Ceramic Society, 2005, 88(10): 2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x
    [14] ZHOU Zhengliu, KELLER S, SEPULVEDA A, et al. Modeling electromagnetic radiation induced from a piezoelectric shear-mode resonator[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 1: 129–138. doi: 10.1109/JMMCT.2016.2630721
    [15] DHIRAJ S and AMARATUNGA G A J. Electromagnetic radiation under explicit symmetry breaking[J]. Physical Review Letters, 2015, 114(14): 147701. doi: 10.1103/PhysRevLett.114.147701
    [16] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2
    [17] HASSANIEN A E, BREEN M, LI Minghuang, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6
    [18] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 761–767. doi: 10.1007/s42114-021-00278-1
    [19] 杨靖, 温习, 杨绍隆, 等. 基于压电效应的低频无线通信机械天线[J]. 北京邮电大学学报, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255

    YANG Jing, WEN Xi, YANG Shaolong, et al. Low-frequency wireless communication mechanical antenna based on piezoelectric effect[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255
    [20] CAO Jinqing, YAO Huiming, PANG Yachen, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 410–418. doi: 10.1007/s42114-022-00431-4
    [21] WHEELER H A. Fundamental limitations of small antennas[J]. Proceedings of the IRE, 1947, 35(12): 1479–1484. doi: 10.1109/JRPROC.1947.226199
    [22] WHEELER H. Small antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 462–469. doi: 10.1109/TAP.1975.1141115
    [23] CHU L J. Physical limitations of Omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163–1175. doi: 10.1063/1.1715038
    [24] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 672–676. doi: 10.1109/8.496253
    [25] 徐国凯. 小型化机械天线的研究[D]. [硕士论文], 电子科技大学, 2021.

    XU Guokai. Research on miniaturized mechanical antennas[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [26] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8
    [27] XIAO Ning, WANG Yao, CHEN Lei, et al. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 34–38. doi: 10.1109/LAWP.2022.3201070
    [28] TIAN Shiwei and NAN Tianxiang. Acoustically driven VLF antennas with high data rates[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 2021: 497–498. doi: 10.1109/APS/URSI47566.2021.9704791.
    [29] 刘卿. 电小天线在甚低频接收系统中的应用研究[D]. [硕士论文], 武汉大学, 2018.

    LIU Qing. The application of the electrically small antenna in very low frequency receiving system[D]. [Master dissertation], Wuhan University, 2018.
  • 加载中
图(13)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  170
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回