高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3DSARBuSim 1.0:人造建筑高分辨星载SAR三维成像仿真数据集

焦润之 邓嘉 韩亚权 黄海风 王青松 赖涛 王小青

焦润之, 邓嘉, 韩亚权, 黄海风, 王青松, 赖涛, 王小青. 3DSARBuSim 1.0:人造建筑高分辨星载SAR三维成像仿真数据集[J]. 电子与信息学报. doi: 10.11999/JEIT230882
引用本文: 焦润之, 邓嘉, 韩亚权, 黄海风, 王青松, 赖涛, 王小青. 3DSARBuSim 1.0:人造建筑高分辨星载SAR三维成像仿真数据集[J]. 电子与信息学报. doi: 10.11999/JEIT230882
JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230882
Citation: JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230882

3DSARBuSim 1.0:人造建筑高分辨星载SAR三维成像仿真数据集

doi: 10.11999/JEIT230882
基金项目: 国家自然科学基金(62071499, 62273365)
详细信息
    作者简介:

    焦润之:男,博士生,研究方向为层析合成孔径雷达技术等

    邓嘉:男,硕士生,研究方向为计算机图像模拟技术等

    韩亚权:男,博士生,研究方向为层析合成孔径雷达成像技术等

    黄海风:男,教授,主要从事空间电子和智能感知领域的基础理论和关键技术攻关研究,主要面向智慧遥感、测绘、海洋、监视、地质灾害等应用方向

    王青松:男,副教授,研究方向为遥感图像精化处理、智能视觉导航、协同探测感知与信息融合等

    赖涛:男,副教授,研究方向为SAR系统设计与信息处理、MIMO成像雷达系统设计与信息处理等

    王小青:男,教授,研究方向为雷达海洋遥感、农业遥感、雷达信号处理等

    通讯作者:

    黄海风 huanghaifeng@mail.sysu.edu.cn

  • 中图分类号: TN918

3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings

Funds: The Natural Science Foundation of China (62071499, 62273365)
  • 摘要: 层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)成像技术可有效解决陡峭地形叠掩恢复难题,因此成为城市测绘技术的研究热点之一。基于公开数据集的评估是TomoSAR算法研究与系统论证的必要过程,但目前存在的公开数据集缺乏相应的地物模型真值,无法对算法进行定量验证。为解决这一问题,并进一步推动TomoSAR技术的发展,该文首先提出一种基于射线追踪的先进星载雷达模拟器(Ray Tracing Space Borne Radar Advanced Simulator,RT-SBRAS),相较过往方法,该模拟器可快速稳定地模拟复杂建筑物星载SAR图像。基于此,构建了人造建筑物高分辨SAR三维成像仿真(3D SAR Building Simulation,3DSARBuSim)数据集的1.0版本,其中包含8个典型建筑物场景的双频段多航过全链路仿真数据。最后给出正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法和双频OMP算法在所提数据集上的验证实验,该数据集可对算法进行清晰、准确的定量比较。
  • 图  2  多次反射示意图

    图  3  射线追踪示意图

    图  4  二维成像验证模型

    图  5  场景模型局部放大

    图  6  各方法仿真结果与实测数据对比

    图  7  各方法仿真结果与实测数据间相似度指标图

    图  8  互相关系数图与干涉图

    图  9  点目标三维模型与其场景建模散射特性计算结果

    图  10  双波段点目标图像

    图  11  航过及其采样示意图

    图  13  不同方法获得的其他仿真数据三维成像结果的3D点云

    图  14  埃菲尔铁塔的各波段所选航过数据重建结果点云

    图  15  埃菲尔铁塔的各波段所选航过数据重建结果点云与场景建模结果点云配准图

    表  2  分布式干涉SAR卫星轨道六根数

    序号 参数
    半长轴a(km) 偏心率e 轨道倾角i(°) 升交点赤经$\varOmega $(°) 近地点幅角ω(°) 真近点角f(°)
    1 6893.38 0.00135 97.4478 295.305 66.7208 76.6798
    30 6893.38 0.00138 97.4535 295.314 72.2645 71.1363
    下载: 导出CSV

    表  1  3DSARBUsim 1.0数据集卫星雷达载荷仿真参数

    参数数值
    工作频率1 (GHz)9.6
    工作频率2 (GHz)7.2
    下视角 (°)36.52
    脉冲重复频率 (Hz)3785
    接收信号采样频率 (MHz)400
    发射信号带宽 (MHz)300
    发射信号峰值功率 (W)7680
    发射信号脉宽 (s)4.7×10–5
    图像方位向采样频率 (Hz)7570
    理论方位分辨率 (m)1.01
    理论斜距分辨率 (m)0.50
    下载: 导出CSV

    表  3  数据集文件构成

    序号文件后缀说明
    1*.skp各建筑物原始三维模型文件
    2*BulidingPc[Name].dat各建筑物场景构建结果点云文件
    3*BulidingSLC[Name].dat各建筑物双频段SLC数据,float32格式,实部虚部交替存放
    4*Parameters.dat实现三维成像所需要的详尽参数,包括卫星轨道数据、天线相位中心数据、雷达系统参数等
    5*readme.pdf说明文件,给出数据集中文件数据存储地址、字节数
    下载: 导出CSV

    表  4  3DSARBuSim 1.0建筑物选择

    英国伦敦桥 泰国泰姬陵 俄罗斯圣巴西勒大教堂 悉尼歌剧院 希腊万神殿 中国黄鹤楼 法国埃菲尔铁塔 法国巴黎圣母院
    下载: 导出CSV

    表  5  3DSARBuSim 1.0建筑物参考卫星仿真SAR图像

    泰姬陵 伦敦塔桥 希腊万神殿 巴黎圣母院 悉尼歌剧院 圣巴西勒大教堂 黄鹤楼 埃菲尔铁塔
    下载: 导出CSV

    表  6  算法恢复双频、单频数据三维场景重建完整性和精确度

    指标波段伦敦桥悉尼
    歌剧院
    巴黎
    圣母院
    泰姬陵黄鹤楼埃菲尔铁塔圣巴西勒大教堂希腊
    万神殿
    完整性(m)C44.62015.102316.127410.81592.10406.61707.96635.6728
    X64.31356.531114.978120.77362.455617.64146.58975.6028
    双频4.36834.170913.037710.61872.69989.58624.51733.1208
    精确度(m)C20.32317.15842.36802.607711.20044.26152.03306.2672
    X28.333515.09734.23243.84149.55894.67202.19396.0266
    双频3.58533.29695.41783.41008.30674.04612.39195.3200
    下载: 导出CSV
  • [1] KNAELL K K and CARDILLO G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. doi: 10.1049/ip-rsn:19951791.
    [2] WEBB J L H and MUNSON D C. Radar imaging of three-dimensional surfaces using limited data[C]. Proceedings of the International Conference on Image Processing, Washington, USA, 1995: 136–139. doi: 10.1109/ICIP.1995.529058.
    [3] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873.
    [4] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
    [5] MEGLIO F, PANARIELLO G, and SCHIRINZI G. Three dimensional SAR image focusing from non-uniform samples[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 528–531. doi: 10.1109/IGARSS.2007.4422847.
    [6] LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324.
    [7] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278.
    [8] GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005: 4.
    [9] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 865–868. doi: 10.1109/IGARSS.2009.5417514.
    [10] HOMER J, LONGSTAFF I D, SHE Z, et al. High resolution 3-D imaging via multi-pass SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(1): 45–50. doi: 10.1049/ip-rsn:20020059.
    [11] SUN Xiaofan, WANG Bingnan, XIANG Maosheng, et al. Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225115. doi: 10.1109/TGRS.2021.3091541.
    [12] VASILE G and CONGEDO M. Comparative analysis of ICA based incoherent target decompositions for Polsar data[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4415–4418. doi: 10.1109/IGARSS46834.2022.9883779.
    [13] CHEN Zhanye, TANG Shiyang, REN Yi, et al. Curvilinear flight synthetic aperture radar (CF-SAR): Principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14(13): 2983. doi: 10.3390/rs14132983.
    [14] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
    [15] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [16] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168.
    [17] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-net: Joint range migration and sparse reconstruction network for 3-D MmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [18] WEI Shunjun, LIANG Jiadian, WANG Mou, et al. AF-AMPNet: A deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206514. doi: 10.1109/TGRS.2021.3073123.
    [19] WU Ke, JIN Guowang, XIONG Xin, et al. Fast SAR image simulation based on echo matrix cell algorithm including multiple scattering[J]. Remote Sensing, 2023, 15(14): 3637. doi: 10.3390/rs15143637.
    [20] FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626.
    [21] MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3517–3526. doi: 10.1109/TGRS.2006.881120.
    [22] XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544.
    [23] AUER S, BALZ T, BECKER S, et al. 3D SAR simulation of urban areas based on detailed building models[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12): 1373–1384. doi: 10.14358/PERS.76.12.1373.
    [24] AUER S, HINZ S, and BAMLER R. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339.
    [25] BALZ T and STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519–3529. doi: 10.1109/TGRS.2009.2022326.
    [26] BALZ T, HAMMER H, and AUER S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 102–109. doi: 10.1016/j.isprsjprs.2014.12.008.
    [27] CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453.
    [28] MEI Dengkui, REN Xiaodong, LE Xuan, et al. Ionospheric tomography: A compressed sensing technique based on dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800410. doi: 10.1109/TGRS.2023.3252041.
    [29] JIAO Runzhi, DENG Jia, WANG Chuxin, et al. A dual-frequency SAR tomography method with fewer flights for urban building reconstruction[J]. IEEE Sensors Journal, 2023, 23(17): 19483–19496. doi: 10.1109/JSEN.2023.3269603.
    [30] CHEN Zhiyang, HU Cheng, DONG Xichao, et al. Coherence-based geosynchronous SAR tomography employing formation flying: System design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7165–7179. doi: 10.1109/TGRS.2021.3056209.
    [31] 李冶. 雷达目标高频散射特性分析及其识别应用研究[D]. [硕士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.

    LI Ye. Analysis of high frequency scattering characteristics of radar targets and research on its recognition application[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.
    [32] 王瑶瑶. 低速小型无人机气动特性和RCS计算分析[D]. [硕士论文], 哈尔滨工程大学, 2016.

    WANG Yaoyao. Low speed small UAVs aerodynamic characteristics and RCS computing analysis[D]. [Master dissertation], Harbin Engineering University, 2016.
    [33] NIU Shengren, QIU Xiaolan, PENG Lingxiao, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
    [34] AUER S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universität München, 2011: 126.
    [35] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013.
    [36] 项德良. SAR图像相似度评估技术研究[D]. [硕士论文], 国防科学技术大学, 2012.

    XIANG Deliang. Research on the evaluation techniques of similarity measure in SAR images[D]. [Master dissertation], National University of Defense Technology, 2012.
    [37] LIU Wenkang, BUDILLON A, PASCAZIO V, et al. Performance improvement for SAR tomography based on local plane model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2298–2310. doi: 10.1109/JSTARS.2022.3151725.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  76
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回