3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings
-
摘要: 层析合成孔径雷达(Tomographic Synthetic Aperture Radar, TomoSAR)成像技术可有效解决陡峭地形叠掩恢复难题,因此成为城市测绘技术的研究热点之一。基于公开数据集的评估是TomoSAR算法研究与系统论证的必要过程,但目前存在的公开数据集缺乏相应的地物模型真值,无法对算法进行定量验证。为解决这一问题,并进一步推动TomoSAR技术的发展,该文首先提出一种基于射线追踪的先进星载雷达模拟器(Ray Tracing Space Borne Radar Advanced Simulator, RT-SBRAS),相较过往方法,该模拟器可快速稳定地模拟复杂建筑物星载SAR图像。基于此,构建了人造建筑物高分辨SAR三维成像仿真(3D SAR Building Simulation, 3DSARBuSim)数据集的1.0版本,其中包含8个典型建筑物场景的双频段多航过全链路仿真数据。最后给出正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法和双频OMP算法在所提数据集上的验证实验,该数据集可对算法进行清晰、准确的定量比较。
-
关键词:
- 合成孔径雷达(SAR) /
- 层析成像 /
- 双频 /
- 数据集
Abstract: Tomographic Synthetic Aperture Radar (TomoSAR) can effectively recover the information of ground objects in steep terrain, and is one of the research hotspots in urban mapping. However, the current public data sets lack the true values of the object models, and cannot quantitatively verify the TomoSAR algorithm. To solve this problem and further promote the development of TomoSAR technology, this paper first proposes an RT-SBRAS (Ray Tracing Based Space Borne Radar Advanced Simulator), which can quickly and stably simulate the spaceborne SAR images of complex buildings compared with previous methods. Based on this, the 1.0 version of the 3D SAR Building Simulation (3DSARBuSim) data set is constructed, which contains the full-link simulation data of eight typical building scenes in dual-band and multi-pass. Finally, Orthogonal Matching Pursuit (OMP) and dual-frequency OMP algorithms are verified on the proposed data set, and the data set can provide clear and accurate quantitative comparison for the algorithms.-
Key words:
- Synthetic Aperture Radar (SAR) /
- Tomography /
- Dual-frequency /
- Data set
-
表 1 分布式干涉SAR卫星轨道六根数
序号 参数 半长轴a(km) 偏心率e 轨道倾角i(°) 升交点赤经$\varOmega $(°) 近地点幅角ω(°) 真近点角f(°) 1 6893.38 0.00135 97.4478 295.305 66.7208 76.6798 30 6893.38 0.00138 97.4535 295.314 72.2645 71.1363 表 2 3DSARBUsim 1.0数据集卫星雷达载荷仿真参数
参数 数值 工作频率1 (GHz) 9.6 工作频率2 (GHz) 7.2 下视角 (°) 36.52 脉冲重复频率 (Hz) 3785 接收信号采样频率 (MHz) 400 发射信号带宽 (MHz) 300 发射信号峰值功率 (W) 7680 发射信号脉宽 (s) 4.7×10–5 图像方位向采样频率 (Hz) 7570 理论方位分辨率 (m) 1.01 理论斜距分辨率 (m) 0.50 表 3 数据集文件构成
序号 文件后缀 说明 1 *.skp 各建筑物原始三维模型文件 2 *BulidingPc[Name].dat 各建筑物场景构建结果点云文件 3 *BulidingSLC[Name].dat 各建筑物双频段SLC数据,float32格式,实部虚部交替存放 4 *Parameters.dat 实现三维成像所需要的详尽参数,包括卫星轨道数据、天线相位中心数据、雷达系统参数等 5 *readme.pdf 说明文件,给出数据集中文件数据存储地址、字节数 表 4 3DSARBuSim 1.0建筑物选择
英国伦敦塔桥 泰国泰姬陵 俄罗斯圣巴西勒大教堂 悉尼歌剧院 希腊万神殿 中国黄鹤楼 法国埃菲尔铁塔 法国巴黎圣母院 表 5 3DSARBuSim 1.0建筑物参考卫星仿真SAR图像
泰姬陵 伦敦塔桥 希腊万神殿 巴黎圣母院 悉尼歌剧院 圣巴西勒大教堂 黄鹤楼 埃菲尔铁塔 表 6 算法恢复双频、单频数据三维场景重建完整性和精确度
指标 波段 伦敦桥 悉尼
歌剧院巴黎
圣母院泰姬陵 黄鹤楼 埃菲尔铁塔 圣巴西勒大教堂 希腊
万神殿完整性(m) C 44.6201 5.1023 16.1274 10.8159 2.1040 6.6170 7.9663 5.6728 X 64.3135 6.5311 14.9781 20.7736 2.4556 17.6414 6.5897 5.6028 双频 4.3683 4.1709 13.0377 10.6187 2.6998 9.5862 4.5173 3.1208 精确度(m) C 20.3231 7.1584 2.3680 2.6077 11.2004 4.2615 2.0330 6.2672 X 28.3335 15.0973 4.2324 3.8414 9.5589 4.6720 2.1939 6.0266 双频 3.5853 3.2969 5.4178 3.4100 8.3067 4.0461 2.3919 5.3200 -
[1] KNAELL K K and CARDILLO G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. doi: 10.1049/ip-rsn:19951791. [2] WEBB J L H and MUNSON D C. Radar imaging of three-dimensional surfaces using limited data[C]. Proceedings of the International Conference on Image Processing, Washington, USA, 1995: 136–139. doi: 10.1109/ICIP.1995.529058. [3] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873. [4] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567. [5] MEGLIO F, PANARIELLO G, and SCHIRINZI G. Three dimensional SAR image focusing from non-uniform samples[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 528–531. doi: 10.1109/IGARSS.2007.4422847. [6] LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324. [7] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278. [8] GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005: 4. [9] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 865–868. doi: 10.1109/IGARSS.2009.5417514. [10] HOMER J, LONGSTAFF I D, SHE Z, et al. High resolution 3-D imaging via multi-pass SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(1): 45–50. doi: 10.1049/ip-rsn:20020059. [11] SUN Xiaofan, WANG Bingnan, XIANG Maosheng, et al. Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225115. doi: 10.1109/TGRS.2021.3091541. [12] VASILE G and CONGEDO M. Comparative analysis of ICA based incoherent target decompositions for Polsar data[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4415–4418. doi: 10.1109/IGARSS46834.2022.9883779. [13] CHEN Zhanye, TANG Shiyang, REN Yi, et al. Curvilinear flight synthetic aperture radar (CF-SAR): Principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14(13): 2983. doi: 10.3390/rs14132983. [14] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112. [15] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027. [16] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168. [17] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-net: Joint range migration and sparse reconstruction network for 3-D MmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405. [18] WEI Shunjun, LIANG Jiadian, WANG Mou, et al. AF-AMPNet: A deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206514. doi: 10.1109/TGRS.2021.3073123. [19] WU Ke, JIN Guowang, XIONG Xin, et al. Fast SAR image simulation based on echo matrix cell algorithm including multiple scattering[J]. Remote Sensing, 2023, 15(14): 3637. doi: 10.3390/rs15143637. [20] FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626. [21] MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3517–3526. doi: 10.1109/TGRS.2006.881120. [22] XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544. [23] AUER S, BALZ T, BECKER S, et al. 3D SAR simulation of urban areas based on detailed building models[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12): 1373–1384. doi: 10.14358/PERS.76.12.1373. [24] AUER S, HINZ S, and BAMLER R. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339. [25] BALZ T and STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519–3529. doi: 10.1109/TGRS.2009.2022326. [26] BALZ T, HAMMER H, and AUER S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 102–109. doi: 10.1016/j.isprsjprs.2014.12.008. [27] CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453. [28] MEI Dengkui, REN Xiaodong, LE Xuan, et al. Ionospheric tomography: A compressed sensing technique based on dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800410. doi: 10.1109/TGRS.2023.3252041. [29] JIAO Runzhi, DENG Jia, WANG Chuxin, et al. A dual-frequency SAR tomography method with fewer flights for urban building reconstruction[J]. IEEE Sensors Journal, 2023, 23(17): 19483–19496. doi: 10.1109/JSEN.2023.3269603. [30] CHEN Zhiyang, HU Cheng, DONG Xichao, et al. Coherence-based geosynchronous SAR tomography employing formation flying: System design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7165–7179. doi: 10.1109/TGRS.2021.3056209. [31] 李冶. 雷达目标高频散射特性分析及其识别应用研究[D]. [硕士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.LI Ye. Analysis of high frequency scattering characteristics of radar targets and research on its recognition application[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310. [32] 王瑶瑶. 低速小型无人机气动特性和RCS计算分析[D]. [硕士论文], 哈尔滨工程大学, 2016.WANG Yaoyao. Low speed small UAVs aerodynamic characteristics and RCS computing analysis[D]. [Master dissertation], Harbin Engineering University, 2016. [33] NIU Shengren, QIU Xiaolan, PENG Lingxiao, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5. [34] AUER S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universität München, 2011: 126. [35] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013. [36] 项德良. SAR图像相似度评估技术研究[D]. [硕士论文], 国防科学技术大学, 2012.XIANG Deliang. Research on the evaluation techniques of similarity measure in SAR images[D]. [Master dissertation], National University of Defense Technology, 2012. [37] LIU Wenkang, BUDILLON A, PASCAZIO V, et al. Performance improvement for SAR tomography based on local plane model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2298–2310. doi: 10.1109/JSTARS.2022.3151725.