高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有可重构特征的轨道角动量天线技术研究进展

吴杰 胡俊 张忠祥 沙威 黄志祥 吴先良

吴杰, 胡俊, 张忠祥, 沙威, 黄志祥, 吴先良. 具有可重构特征的轨道角动量天线技术研究进展[J]. 电子与信息学报, 2024, 46(4): 1173-1185. doi: 10.11999/JEIT230847
引用本文: 吴杰, 胡俊, 张忠祥, 沙威, 黄志祥, 吴先良. 具有可重构特征的轨道角动量天线技术研究进展[J]. 电子与信息学报, 2024, 46(4): 1173-1185. doi: 10.11999/JEIT230847
WU Jie, HU Jun, ZHANG Zhongxiang, SHA Wei, HUANG Zhixiang, WU Xianliang. Research Progress of Orbital Angular Momentum Antenna Technologies with Reconfigurable Characteristics[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1173-1185. doi: 10.11999/JEIT230847
Citation: WU Jie, HU Jun, ZHANG Zhongxiang, SHA Wei, HUANG Zhixiang, WU Xianliang. Research Progress of Orbital Angular Momentum Antenna Technologies with Reconfigurable Characteristics[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1173-1185. doi: 10.11999/JEIT230847

具有可重构特征的轨道角动量天线技术研究进展

doi: 10.11999/JEIT230847
基金项目: 国家自然科学基金(62201192, 62201190),东南大学毫米波全国重点实验室开放基金(K202315)
详细信息
    作者简介:

    吴杰:男,博士,讲师,研究方向为可重构天线、轨道角动量天线

    胡俊:男,博士,教授,硕士生导师,研究方向为微波毫米波天线等

    张忠祥:男,博士,教授,硕士生导师,研究方向为电磁场与微波技术等

    沙威:男,博士,教授,博士生导师,研究方向为计算与应用电磁学等

    黄志祥:男,博士,教授,博士生导师,研究方向为计算电磁学、天线设计等

    吴先良:男,教授,博士生导师,研究方向为计算电磁学、天线设计等

    通讯作者:

    黄志祥 zxhuang@ahu.edu.cn

  • 中图分类号: TN820

Research Progress of Orbital Angular Momentum Antenna Technologies with Reconfigurable Characteristics

Funds: The National Natural Science Foundation of China (62201192, 62201190), The State Key Laboratory of Millimeter Waves of Southeast University (K202315)
  • 摘要: 轨道角动量(OAM)因其模式具有理论上无穷且正交互不干扰的特点,在扩展信道容量方面展现出良好的优势,为解决日趋紧张的频谱资源提供了一种新型设计自由度。面对复杂多样的无线通信场景,设计具有可重构特征的OAM天线,是实现多模态复用、智能信息感知和人工智能天线的物理层基础。该文首先结合可重构天线实现机理,给出了OAM可重构天线设计的方法及具备的特点;然后,系统性综述了具有可重构特征的OAM天线的研究进展;最后,对未来设计具有可重构特征的OAM天线研究进行了展望。
  • 图  1  OAM-MIMO模式复用和解复用原理图及SISO与MIMO信道容量比较

    图  2  各种可重构器件及其应用设计

    图  3  基于UCA-OAM复用天线在多径环境中传播模型

    图  4  各种类型的OAM天线

    图  5  各种具有可重构特征OAM波多模生成结构

    表  1  射频微波段代表性天线产生OAM波性能总结

    天线结构 文献 时间 中心频率
    (GHz)
    OAM模式 发散角 优点 缺点
    螺旋相位板
    (SPP)
    [69] 2020 18 1 未给出 1.模式纯度高
    2.增益高
    1.不适合低频率
    2.限制多模产生
    3.难于加工制作
    4.设计灵活性差
    [15] 2014 28 ±1和±3 未给出
    反射板抛物面 [71] 2015 18 +1 12° 1.设计复杂度低
    2.模式纯度高
    3.高阶模式发散小
    4.增益方向性高
    1.限制多模式产生
    2.设计适用性差
    3.口径尺寸大
    4.馈线遮挡信号
    [72] 2021 10 不固定
    (理论分析)
    10°
    圆环阵列天线
    (UCA)
    [32] 2014 1.55 ±1 未给出 1.中等设计复杂度
    2.设计适应性强
    3.频率适应范围宽
    4.可产生多模式,模式纯度中等
    1.互耦可能会存在
    2.增益较低
    [74] 2019 73.5 +1和+3 60°
    [75] 2020 5.2 ±1和±2 30°
    [76] 2022 29 0,±1,±2和±3 未给出
    [77] 2022 9.2 –1和–2 90°
    超表面 [78] 2019 5.2和10.5 +1和+2 18° 1.OAM波发散小
    2.可产生多模式
    1.口径尺寸比较大
    2.设计复杂度高
    3.设计适应性差
    [79] 2019 10 +1 15°
    [80] 2023 28 –1和–2 20°
    介质谐振天线
    (DRA)
    [81] 2016 17.8和20.4 –3和–4 未给出 1.设计复杂度低
    2. 可产生多模式
    1.由于介电常数原因,
    在高频段口径尺寸变大
    [82] 2017 5.8 ±1 90°
    [83] 2023 3.56 +1 45°
    螺旋行波天线 [84] 2019 5.8 0,–1,–2和-3 未给出 1.多模复用适应性强
    2. 模式纯度较高
    3. 设计复杂度低
    1.增益较低
    2.波束易发散,传播距离有限
    [19] 2019 3 +1,+3和+5 60°
    [86] 2023 3.5 0,–1,–2和-3 90°
    下载: 导出CSV

    表  2  具有可重构特征的各种类型OAM天线性能比较

    天线结构 文献 工作频率(GHz) 天线尺寸(λ0) 极化 OAM模式 增益(dBi) 发散角 可重构方案
    及控制装置
    微带天线(UCA) [22] 2.29~2.75 1.28×1.28×0.07 LHCP和
    RHCP
    ±1 5.3 60° RFN,
    16个p-i-n二极管
    [30] 5.0~6.3 2.38×2.38×0.07 LP ±1和0 11.05 40° RFN+可重构辐射单元,
    32个p-i-n二极管
    [31] 2.45 1.7×2×0.007 LP ±1 7.1,7.0 80° 8个变容管
    [93] 5.0~5.4 2.8×2.8×
    0.06
    LP ±1和±2
    混合模式
    ±1:3.7
    ±2:8.9
    40° 双圆环阵列
    多端口实现
    [77] 8.9~9.3 半径:1.23
    高度:0.12
    LHCP和
    RHCP
    –1和–2 8~10 90° 双圆环阵列
    多端口实现
    水天线 [89] 2.35~2.55 半径:1.29
    高度:0.1
    LP +1,+2独立和混合 2.5~
    4.1
    75° RFN,
    2个p-i-n二极管
    超表面
    透射阵
    [90] 9.5~10.5 9.32×9.32×
    0.03
    LP +1和+2 13.1~
    18.5
    25° 20×20单元,
    800个p-i-n二极管
    [91] 5.7~6.4 3.2×3.2×
    0.05
    LP 0,±1和±2 15.9 未给出 16×16单元,
    512个p-i-n二极管
    超表面
    反射阵
    [36] 10 10.7×10.7×
    0.037
    LP ±1 未给出 未给出 32×32单元,
    2048个变容管
    [76] 28~30 10×10×
    0.143
    LP 0,±1,±2和±3 0:24.2 未给出 20×20单元,
    400个p-i-n二极管
    八臂螺旋天线 [92] 2.427 半径:0.7 LP 多个单模及双模式混合 6.53~
    8.42
    未给出 用于MIMO系统,端口控制
    卡塞格伦反射面天线 [88] 18 高剖面 LP 0和±1 高增益 10° 馈电端口控制
    UCA龙伯透镜 [93] 2.45 半径:2.5
    高剖面
    LP 0,+1和+2 高增益 30° 馈电端口控制
    双螺旋液体天线 [94] 1.6~2.1/
    5.2~6.0
    半径:23 mm
    高度:47 mm
    LP ±1和±3 7.2~
    7.7
    90° 注入溶液温度、浓度
    下载: 导出CSV
  • [1] ZHANG Jing, GE Xiaohu, LI Qiang, et al. 5G millimeter-wave antenna array: Design and challenges[J]. IEEE Wireless Communications, 2017, 24(2): 106–112. doi: 10.1109/MWC.2016.1400374RP.
    [2] HE Yejun, CHEN Yaling, ZHANG Long, et al. An overview of terahertz antennas[J]. China Communications, 2020, 17(7): 124–165. doi: 10.23919/J.CC.2020.07.011.
    [3] XU Jianchun, GUO Yaxian, YANG Puyu, et al. Recent progress on RF orbital angular momentum antennas[J]. Journal of Electromagnetic Waves and Applications, 2020, 34(3): 275–300. doi: 10.1080/09205071.2019.1708814.
    [4] 赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.

    ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.
    [5] OJAROUDI PARCHIN N, JAHANBAKHSH BASHERLOU H, AL-YASIR Y I, et al. Reconfigurable antennas: Switching techniques—A survey[J]. Electronics, 2020, 9(2): 336. doi: 10.3390/electronics9020336.
    [6] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [7] SHARMA P, TIWARI R N, SINGH P, et al. MIMO antennas: Design approaches, techniques and applications[J]. Sensors, 2022, 22(20): 7813. doi: 10.3390/s22207813.
    [8] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529.
    [9] WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/NPHOTON.2012.138.
    [10] FRANKE-ARNOLD S, BARNETT S M, PADGETT M J, et al. Two-photon entanglement of orbital angular momentum states[J]. Physical Review A, 2002, 65(3): 033823. doi: 10.1103/PhysRevA.65.033823.
    [11] KU Chenda, HUANG Weilun, HUANG J S, et al. Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral[J]. IEEE Photonics Journal, 2013, 5(3): 4800409. doi: 10.1109/JPHOT.2013.2261802.
    [12] RUFFATO G, MASSARI M, and ROMANATO F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light:Science & Applications, 2019, 8: 113. doi: 10.1038/s41377-019-0222-2.
    [13] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701.
    [14] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001.
    [15] YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876.
    [16] YANG Tianming, YANG Deqiang, WANG Boning, et al. Experimentally validated, wideband, compact, OAM antennas based on circular vivaldi antenna array[J]. Progress in Electromagnetics Research C, 2018, 80: 211–219. doi: 10.2528/PIERC17110702.
    [17] DENG Changjiang, ZHANG Kai, and FENG Zhenghe. Generating and measuring tunable orbital angular momentum radio beams with digital control method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 899–902. doi: 10.1109/TAP.2016.2632532.
    [18] BARBUTO M, TROTTA F, BILOTTI F, et al. Circular polarized patch antenna generating orbital angular momentum[J]. Progress in Electromagnetics Research, 2014, 148: 23–30. doi: 10.2528/PIER14050204.
    [19] YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601.
    [20] ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885.
    [21] ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 194–197. doi: 10.1109/LAWP.2016.2569540.
    [22] DENG Changjiang, CHEN Wenhua, ZHANG Zhijun, et al. Generation of OAM radio waves using circular Vivaldi antenna array[J]. International Journal of Antennas and Propagation, 2013, 2013: 847859. doi: 10.1155/2013/847859.
    [23] XU Chen, ZHENG Shilie, ZHANG Weite, et al. Free-space radio communication employing OAM multiplexing based on rotman lens[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 738–740. doi: 10.1109/LMWC.2016.2597262.
    [24] LIU Qiang, CHEN Zhining, LIU Yuanan, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1796–1804. doi: 10.1109/TAP.2018.2803757.
    [25] YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786.
    [26] MA Qian, SHI Chuanbo, BAI Guodong, et al. Coding metasurfaces: Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit (advanced optical materials 23/2017)[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201770117.
    [27] LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214.
    [28] 李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001.

    LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001.
    [29] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091.

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091.
    [30] WU Jie, ZHANG Zhongxiang, REN Xingang, et al. A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1482–1486. doi: 10.1109/LAWP.2019.2920695.
    [31] NASERI H, POURMOHAMMADI P, MELOUKI N, et al. A low-profile antenna system for generating reconfigurable OAM-carrying beams[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 402–406. doi: 10.1109/LAWP.2022.3214123.
    [32] XIONG Xiaowen, ZHENG Shilie, CHEN Yuqi, et al. Plane spiral OAM mode-group orthogonal multiplexing communication using partial arc sampling receiving scheme[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10998–11008. doi: 10.1109/TAP.2022.3188386.
    [33] LIAO Zhen, CHE Yanziyi, LIU Leilei, et al. Reconfigurable vector vortex beams using spoof surface Plasmon ring resonators[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6795–6803. doi: 10.1109/TAP.2022.3161487.
    [34] LEE D, SASAKI H, FUKUMOTO H, et al. An evaluation of orbital angular momentum multiplexing technology[J]. Applied Sciences, 2019, 9(9): 1729. doi: 10.3390/app909 1729.
    [35] GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914.
    [36] LIU Baiyang, HE Yejun, WONG S W, et al. Multifunctional vortex beam generation by a dynamic reflective metasurface[J]. Advanced Optical Materials, 2021, 9(4): 2001689. doi: 10.1002/adom.202001689.
    [37] HUANG Huifen and ZHANG Zhiping. A single fed wideband mode-reconfigurable OAM metasurface CP antenna array with simple feeding scheme[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 31(2): e22499. doi: 10.1002/mmce.22499.
    [38] YAO Yu, LIANG Xianling, ZHU Weiren, et al. Phase mode analysis of radio beams carrying orbital angular momentum[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1127–1130. doi: 10.1109/LAWP.2016.2623808.
    [39] 熊孝文. 基于射频轨道角动量的波束赋形技术及应用研究[D]. [博士论文], 浙江大学, 2022.

    XIONG Xiaowen. Research on radio orbital angular momentum based beamforming technology and its applications[D]. [Ph. D. dissertation], Zhejiang University, 2022.
    [40] JIA Yinjie, XU Pengfei, and GUO Xinnian. MIMO system capacity based on different numbers of antennas[J]. Results in Engineering, 2022, 15: 100577. doi: 10.1016/J.RINENG.2022.100577.
    [41] LAVADIYA S P, SORATHIYA V, KANZARIYA S, et al. Low profile multiband microstrip patch antenna with frequency reconfigurable feature using PIN diode for S, C, X, and Ku band applications[J]. International journal of communication systems, 2022, (9): 35 doi: 10.1002/dac.5141.
    [42] LI Ji, HE Mang, WU Chunbo, et al. Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1771–1775. doi: 10.1109/LAWP.2017.2676121.
    [43] WRIGHT M D, BARON W, MILLER J, et al. MEMS reconfigurable broadband patch antenna for conformal applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2770–2778. doi: 10.1109/TAP.2018.2819818.
    [44] MAJID H A, RAHIM M K A, HAMID M R, et al. A compact frequency-reconfigurable narrowband microstrip slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 616–619. doi: 10.1109/LAWP.2012.2202869.
    [45] QIN Peiyuan, WEI Feng, and GUO Y J. A wideband-to-narrowband tunable antenna using a reconfigurable filter[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2282–2285. doi: 10.1109/tap.2015.2402295.
    [46] BORDA-FORTUNY C, TONG K F, AL-ARMAGHANY A, et al. A low-cost fluid switch for frequency-reconfigurable Vivaldi antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3151–3154. doi: 10.1109/LAWP.2017.2759580.
    [47] YANG S L S, KISHK A A, and LEE K F. Frequency reconfigurable U-slot microstrip patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 127–129. doi: 10.1109/LAWP.2008.921330.
    [48] SIM C Y D, HAN T Y, and LIAO Yanjie. A frequency reconfigurable half annular ring slot antenna design[J]. IEEE Transactions on Antennas and propagation, 2014, 62(6): 3428–3431. doi: 10.1109/TAP.2014.2314314.
    [49] JI Luyang, QIN Peiyuan, GUO Y J, et al. A wideband polarization reconfigurable antenna with partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4534–4538. doi: 10.1109/TAP.2016.2593716.
    [50] TRAN H H, NGUYEN-TRONG N, LE T T, et al. Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3741–3746. doi: 10.1109/TAP.2018.2826657.
    [51] SUN Hucheng and SUN Sheng. A novel reconfigurable feeding network for quad-polarization-agile antenna design[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 311–316. doi: 10.1109/TAP.2015.2497350.
    [52] ROW J S and HOU M J. Design of polarization diversity patch antenna based on a compact reconfigurable feeding network[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5349–5352. doi: 10.1109/TAP.2014.2341271.
    [53] WU Jie, FAN Min, and WU Xianliang. A beam reconfigurable array antenna using slot-coupled microstrip structure[J]. Electronics Letters, 2023, 59(16): e12926. doi: 10.1049/ell2.12926.
    [54] WANG Zhan and DONG Yuandan. Metamaterial-based, vertically polarized, miniaturized beam-steering antenna for reconfigurable sub-6 GHz applications[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2239–2243. doi: 10.1109/LAWP.2022.3188548.
    [55] YOU Changjiang, LIU Shuhan, ZHANG Jinxi, et al. Frequency- and pattern-reconfigurable antenna array with broadband tuning and wide scanning angles[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5398–5403. doi: 10.1109/TAP.2023.3255647.
    [56] HU Jun and HAO Zhangcheng. Design of a frequency and polarization reconfigurable patch antenna with a stable gain[J]. IEEE Access, 2018, 6: 68169–68175. doi: 10.1109/ACCESS.2018.2879498.
    [57] CUI Jie, LIU Fengxue, ZHAO Lei, et al. Textile fixed-frequency pattern-reconfigurable coupled-mode substrate-integrated cavity antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(9): 1916–1919. doi: 10.1109/LAWP.2022.3185205.
    [58] WANG Pengfei, JIA Yongtao, LIU Ying, et al. A wideband low-RCS circularly polarized reconfigurable C-shaped antenna array based on liquid metal[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 8020–8029. doi: 10.1109/TAP.2022.3164179.
    [59] HU Jun, YANG Xujun, GE Lei, et al. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129. doi: 10.1109/TAP.2020.3048526.
    [60] ZHOU Jiatong, CHENG Wenchi, and LIANG Liping. OAM transmission in sparse multipath environments with fading[C]. 2020 IEEE International Conference on Communication, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9149057.
    [61] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787.
    [62] 廖希, 何昌文, 王洋, 等. 室内走廊环境毫米波OAM信道特性分析与统计建模[J]. 电子与信息学报, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145.

    LIAO Xi, HE Changwen, WANG Yang, et al. Characteristic analysis and statistical modeling of millimeter wave OAM channel in indoor corridor environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145.
    [63] SUGANUMA H, SAITO S, OGAWA K, et al. Effectiveness evaluation of dual-polarized OAM multiplexing employing SC-FDE in urban street canyon environments[J]. IEEE Access, 2022, 10: 31934–31941. doi: 10.1109/ACCESS.2022.3160161.
    [64] ZHANG Yiming and LI Jialin. Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7010–7020. doi: 10.1109/TAP.2018.2872169.
    [65] CHEN Rui, LONG Wenxuan, WANG Xiaodong, et al. Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6932–6947. doi: 10.1109/TWC.2020.3007026.
    [66] XIONG Xiaowen, ZHENG Shilie, ZHU Zelin, et al. Experimental study of plane spiral OAM mode-group based MIMO communications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 641–653. doi: 10.1109/TAP.2021.3098518.
    [67] LI Sijia, LI Zhuoyue, HUANG Guoshai, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Frontiers of Physics, 2022, 17(6): 62501. doi: 10.1007/s11467-022-1179-9.
    [68] YUAN S S A, WU Jie, CHEN M L N, et al. Approaching the fundamental limit of orbital-angular-momentum multiplexing through a hologram metasurface[J]. Physical Review Applied, 2021, 16(6): 064042. doi: 10.1103/PhysRevApplied.16.064042.
    [69] ISAKOV D, WU Y, ALLEN B, et al. Evaluation of the Laguerre–Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates[J]. Royal Society Open Science, 2020, 7(7): 200493. doi: 10.1098/rsos.200493.
    [70] ZHANG Z, ZHENG S, JIN X, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16(1): 1–1. doi: 10.1109/LAWP.2016.2552227.
    [71] BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833.
    [72] WU Qiuli, JIANG Xuefeng, and ZHANG Chao. Attenuation of orbital angular momentum beam transmission with a parabolic antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(10): 1849–1853. doi: 10.1109/LAWP.2021.3094978.
    [73] ZHU Juanfeng, DU Chaohai, SHA W E I, et al. A wideband OAM antenna based on chiral harmonic diffraction[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2290–2294. doi: 10.1109/LAWP.2021.3108553.
    [74] BI Ke, XU Jianchun, YANG Daquan, et al. Generation of orbital angular momentum beam with circular polarization ceramic antenna array[J]. IEEE Photonics Journal, 2019, 11(2): 7901508. doi: 10.1109/JPHOT.2019.2899236.
    [75] YOO J U and SON H W. Quad‐mode radial uniform circular array antenna for OAM multiplexing[J]. IET Microwaves, Antennas & Propagation, 2020, 14(8): 728–733. doi: 10.1049/iet-map.2019.0767.
    [76] BAI Xudong, ZHANG Fuli, SUN Li, et al. Dynamic millimeter-wave OAM beam generation through programmable metasurface[J]. Nanophotonics, 2022, 11(7): 1389–1399. doi: 10.1515/nanoph-2021-0790.
    [77] ZHANG Tianzi, HU Jun, ZHANG Qiyun, et al. A compact multimode OAM antenna using sequentially rotated configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 134–138. doi: 10.1109/LAWP.2021.3121134.
    [78] QIN Fan, WAN Lulan, LI Lihong, et al. A transmission metasurface for generating OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1793–1796. doi: 10.1109/LAWP.2018.2867045.
    [79] JI Chen, SONG Jiakun, HUANG Cheng, et al. Dual-band vortex beam generation with different OAM modes using single-layer metasurface[J]. Optics Express, 2019, 27(1): 34–44. doi: 10.1364/OE.27.000034.
    [80] NASERI H, POURMOHAMMADI P, MELOUKI N, et al. Generation of mixed-OAM-carrying waves using huygens’ metasurface for mm-wave applications[J]. Sensors, 2023, 23(5): 2590. doi: 10.3390/s23052590.
    [81] LIANG Jiajun and ZHANG Shengli. Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications[J]. IEEE Access, 2016, 4: 9570–9574. doi: 10.1109/ACCESS.2016.2636166.
    [82] PAN Yu, ZHENG Shilie, ZHENG Jiayu, et al. Generation of orbital angular momentum radio waves based on dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 385–388. doi: 10.1109/LAWP.2016.2578958.
    [83] ABD RAHMAN N A, NOOR S K, IBRAHIM I M, et al. A low-profile dielectric resonator antenna array for OAM waves generation at 5G NR bands[J]. Micromachines, 2023, 14(4): 841. doi: 10.3390/mi14040841.
    [84] YI Ziqiang, TIAN Shuai, LIU Yafei, et al. Multimode orbital angular momentum antenna based on four-arm planar spiral[J]. Electronics Letters, 2019, 55(16): 875–876. doi: 10.1049/el.2019.1606.
    [85] ZHENG F, CHEN Y, JI S, et al. Research status and prospects of orbital angular momentum technology in wireless communication[J]. Progress In Electromagnetics Research, 2020, 168: 113–132. doi: 10.2528/PIER20091104.
    [86] KOOHKAN E, JARCHI S, GHORBANI A, et al. Designing a compact helical slot antenna for multiple circularly polarized OAM modes[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(3): 527–530. doi: 10.1109/LAWP.2022.3217247.
    [87] NOOR S K, YASIN M N M, ISMAIL A M, et al. A review of orbital angular momentum vortex waves for the next generation wireless communications[J]. IEEE Access, 2022, 10: 89465–89484. doi: 10.1109/ACCESS.2022.3197653.
    [88] BYUN W J, KIM K S, KIM B S, et al. Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes[J]. Scientific Reports, 2016, 6(1): 27339. doi: 10.1038/srep27339.
    [89] MING Jie and SHI Yan. A mode reconfigurable orbital angular momentum water antenna[J]. IEEE Access, 2020, 8: 89152–89160. doi: 10.1109/ACCESS.2020.2993490.
    [90] LIU Baiyang, LI Sirong, HE Yejun, et al. Generation of an orbital-angular-momentum-mode-reconfigurable beam by a broadband 1-bit electronically reconfigurable transmitarray[J]. Physical Review Applied, 2021, 15(4): 044035. doi: 10.1103/PhysRevApplied.15.044035.
    [91] NADI M, SEDIGHY S, and CHELDAVI A. Multimode OAM beam generation through 1-Bit programmable metasurface antenna for high throughput data communications[J]. 2023. doi: 10.21203/rs.3.rs-3022677/v1.
    [92] LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006.
    [93] CHEN Rui, ZHOU Jiaxing, LONG Wenxuan, et al. Hybrid circular array and luneberg lens for long-distance OAM wireless communications[J]. IEEE Transactions on Communications, 2023, 71(1): 485–497. doi: 10.1109/TCOMM.2022.3223697.
    [94] YU Zhong, GAO Qi, HE Bingwen, et al. Effects of concentration, temperature, and geometry on double spiral liquid orbital angular momentum antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2506–2510. doi: 10.1109/LAWP.2021.3115905.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  272
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 修回日期:  2023-11-29
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回