Research Progress of Orbital Angular Momentum Antenna Technologies with Reconfigurable Characteristics
-
摘要: 轨道角动量(OAM)因其模式具有理论上无穷且正交互不干扰的特点,在扩展信道容量方面展现出良好的优势,为解决日趋紧张的频谱资源提供了一种新型设计自由度。面对复杂多样的无线通信场景,设计具有可重构特征的OAM天线,是实现多模态复用、智能信息感知和人工智能天线的物理层基础。该文首先结合可重构天线实现机理,给出了OAM可重构天线设计的方法及具备的特点;然后,系统性综述了具有可重构特征的OAM天线的研究进展;最后,对未来设计具有可重构特征的OAM天线研究进行了展望。Abstract: Orbital Angular Momentum (OAM) technology provides a new degree of freedom to tackle the problems of the increasingly strained frequency resources, due to its theoretical orthogonal modes and non-interference with each other, which shows a good advantage in expanding the channel capacity. To face complex and diverse wireless communication scenarios, the design of reconfigurable OAM antennas is the physical layer basis for multi-mode multiplexing, intelligent information sensing, and artificial intelligence antennas. In this paper, the design method and characteristics of OAM reconfigurable antenna are studied according to the realization mechanism of reconfigurable antennas. Then, the research progress of reconfigurable OAM antennas is systematically reviewed. Finally, the future design of reconfigurable OAM antenna is discussed.
-
表 1 射频微波段代表性天线产生OAM波性能总结
天线结构 文献 时间 中心频率
(GHz)OAM模式 发散角 优点 缺点 螺旋相位板
(SPP)[69] 2020 18 1 未给出 1.模式纯度高
2.增益高1.不适合低频率
2.限制多模产生
3.难于加工制作
4.设计灵活性差[15] 2014 28 ±1和±3 未给出 反射板抛物面 [71] 2015 18 +1 12° 1.设计复杂度低
2.模式纯度高
3.高阶模式发散小
4.增益方向性高1.限制多模式产生
2.设计适用性差
3.口径尺寸大
4.馈线遮挡信号[72] 2021 10 不固定
(理论分析)10° 圆环阵列天线
(UCA)[32] 2014 1.55 ±1 未给出 1.中等设计复杂度
2.设计适应性强
3.频率适应范围宽
4.可产生多模式,模式纯度中等1.互耦可能会存在
2.增益较低[74] 2019 73.5 +1和+3 60° [75] 2020 5.2 ±1和±2 30° [76] 2022 29 0,±1,±2和±3 未给出 [77] 2022 9.2 –1和–2 90° 超表面 [78] 2019 5.2和10.5 +1和+2 18° 1.OAM波发散小
2.可产生多模式1.口径尺寸比较大
2.设计复杂度高
3.设计适应性差[79] 2019 10 +1 15° [80] 2023 28 –1和–2 20° 介质谐振天线
(DRA)[81] 2016 17.8和20.4 –3和–4 未给出 1.设计复杂度低
2. 可产生多模式1.由于介电常数原因,
在高频段口径尺寸变大[82] 2017 5.8 ±1 90° [83] 2023 3.56 +1 45° 螺旋行波天线 [84] 2019 5.8 0,–1,–2和-3 未给出 1.多模复用适应性强
2. 模式纯度较高
3. 设计复杂度低1.增益较低
2.波束易发散,传播距离有限[19] 2019 3 +1,+3和+5 60° [86] 2023 3.5 0,–1,–2和-3 90° 表 2 具有可重构特征的各种类型OAM天线性能比较
天线结构 文献 工作频率(GHz) 天线尺寸(λ0) 极化 OAM模式 增益(dBi) 发散角 可重构方案
及控制装置微带天线(UCA) [22] 2.29~2.75 1.28×1.28×0.07 LHCP和
RHCP±1 5.3 60° RFN,
16个p-i-n二极管[30] 5.0~6.3 2.38×2.38×0.07 LP ±1和0 11.05 40° RFN+可重构辐射单元,
32个p-i-n二极管[31] 2.45 1.7×2×0.007 LP ±1 7.1,7.0 80° 8个变容管 [93] 5.0~5.4 2.8×2.8×
0.06LP ±1和±2
混合模式±1:3.7
±2:8.940° 双圆环阵列
多端口实现[77] 8.9~9.3 半径:1.23
高度:0.12LHCP和
RHCP–1和–2 8~10 90° 双圆环阵列
多端口实现水天线 [89] 2.35~2.55 半径:1.29
高度:0.1LP +1,+2独立和混合 2.5~
4.175° RFN,
2个p-i-n二极管超表面
透射阵[90] 9.5~10.5 9.32×9.32×
0.03LP +1和+2 13.1~
18.525° 20×20单元,
800个p-i-n二极管[91] 5.7~6.4 3.2×3.2×
0.05LP 0,±1和±2 15.9 未给出 16×16单元,
512个p-i-n二极管超表面
反射阵[36] 10 10.7×10.7×
0.037LP ±1 未给出 未给出 32×32单元,
2048个变容管[76] 28~30 10×10×
0.143LP 0,±1,±2和±3 0:24.2 未给出 20×20单元,
400个p-i-n二极管八臂螺旋天线 [92] 2.427 半径:0.7 LP 多个单模及双模式混合 6.53~
8.42未给出 用于MIMO系统,端口控制 卡塞格伦反射面天线 [88] 18 高剖面 LP 0和±1 高增益 10° 馈电端口控制 UCA龙伯透镜 [93] 2.45 半径:2.5
高剖面LP 0,+1和+2 高增益 30° 馈电端口控制 双螺旋液体天线 [94] 1.6~2.1/
5.2~6.0半径:23 mm
高度:47 mmLP ±1和±3 7.2~
7.790° 注入溶液温度、浓度 -
[1] ZHANG Jing, GE Xiaohu, LI Qiang, et al. 5G millimeter-wave antenna array: Design and challenges[J]. IEEE Wireless Communications, 2017, 24(2): 106–112. doi: 10.1109/MWC.2016.1400374RP. [2] HE Yejun, CHEN Yaling, ZHANG Long, et al. An overview of terahertz antennas[J]. China Communications, 2020, 17(7): 124–165. doi: 10.23919/J.CC.2020.07.011. [3] XU Jianchun, GUO Yaxian, YANG Puyu, et al. Recent progress on RF orbital angular momentum antennas[J]. Journal of Electromagnetic Waves and Applications, 2020, 34(3): 275–300. doi: 10.1080/09205071.2019.1708814. [4] 赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899.ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899. [5] OJAROUDI PARCHIN N, JAHANBAKHSH BASHERLOU H, AL-YASIR Y I, et al. Reconfigurable antennas: Switching techniques—A survey[J]. Electronics, 2020, 9(2): 336. doi: 10.3390/electronics9020336. [6] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897. [7] SHARMA P, TIWARI R N, SINGH P, et al. MIMO antennas: Design approaches, techniques and applications[J]. Sensors, 2022, 22(20): 7813. doi: 10.3390/s22207813. [8] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529. [9] WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/NPHOTON.2012.138. [10] FRANKE-ARNOLD S, BARNETT S M, PADGETT M J, et al. Two-photon entanglement of orbital angular momentum states[J]. Physical Review A, 2002, 65(3): 033823. doi: 10.1103/PhysRevA.65.033823. [11] KU Chenda, HUANG Weilun, HUANG J S, et al. Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral[J]. IEEE Photonics Journal, 2013, 5(3): 4800409. doi: 10.1109/JPHOT.2013.2261802. [12] RUFFATO G, MASSARI M, and ROMANATO F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light:Science & Applications, 2019, 8: 113. doi: 10.1038/s41377-019-0222-2. [13] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701. [14] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001. [15] YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876. [16] YANG Tianming, YANG Deqiang, WANG Boning, et al. Experimentally validated, wideband, compact, OAM antennas based on circular vivaldi antenna array[J]. Progress in Electromagnetics Research C, 2018, 80: 211–219. doi: 10.2528/PIERC17110702. [17] DENG Changjiang, ZHANG Kai, and FENG Zhenghe. Generating and measuring tunable orbital angular momentum radio beams with digital control method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 899–902. doi: 10.1109/TAP.2016.2632532. [18] BARBUTO M, TROTTA F, BILOTTI F, et al. Circular polarized patch antenna generating orbital angular momentum[J]. Progress in Electromagnetics Research, 2014, 148: 23–30. doi: 10.2528/PIER14050204. [19] YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601. [20] ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885. [21] ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 194–197. doi: 10.1109/LAWP.2016.2569540. [22] DENG Changjiang, CHEN Wenhua, ZHANG Zhijun, et al. Generation of OAM radio waves using circular Vivaldi antenna array[J]. International Journal of Antennas and Propagation, 2013, 2013: 847859. doi: 10.1155/2013/847859. [23] XU Chen, ZHENG Shilie, ZHANG Weite, et al. Free-space radio communication employing OAM multiplexing based on rotman lens[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 738–740. doi: 10.1109/LMWC.2016.2597262. [24] LIU Qiang, CHEN Zhining, LIU Yuanan, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1796–1804. doi: 10.1109/TAP.2018.2803757. [25] YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786. [26] MA Qian, SHI Chuanbo, BAI Guodong, et al. Coding metasurfaces: Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit (advanced optical materials 23/2017)[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201770117. [27] LIU Baiyang, WONG S W, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214. [28] 李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001.LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001. [29] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091.GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091. [30] WU Jie, ZHANG Zhongxiang, REN Xingang, et al. A broadband electronically mode-reconfigurable orbital angular momentum metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1482–1486. doi: 10.1109/LAWP.2019.2920695. [31] NASERI H, POURMOHAMMADI P, MELOUKI N, et al. A low-profile antenna system for generating reconfigurable OAM-carrying beams[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 402–406. doi: 10.1109/LAWP.2022.3214123. [32] XIONG Xiaowen, ZHENG Shilie, CHEN Yuqi, et al. Plane spiral OAM mode-group orthogonal multiplexing communication using partial arc sampling receiving scheme[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(11): 10998–11008. doi: 10.1109/TAP.2022.3188386. [33] LIAO Zhen, CHE Yanziyi, LIU Leilei, et al. Reconfigurable vector vortex beams using spoof surface Plasmon ring resonators[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6795–6803. doi: 10.1109/TAP.2022.3161487. [34] LEE D, SASAKI H, FUKUMOTO H, et al. An evaluation of orbital angular momentum multiplexing technology[J]. Applied Sciences, 2019, 9(9): 1729. doi: 10.3390/app909 1729. [35] GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914. [36] LIU Baiyang, HE Yejun, WONG S W, et al. Multifunctional vortex beam generation by a dynamic reflective metasurface[J]. Advanced Optical Materials, 2021, 9(4): 2001689. doi: 10.1002/adom.202001689. [37] HUANG Huifen and ZHANG Zhiping. A single fed wideband mode-reconfigurable OAM metasurface CP antenna array with simple feeding scheme[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 31(2): e22499. doi: 10.1002/mmce.22499. [38] YAO Yu, LIANG Xianling, ZHU Weiren, et al. Phase mode analysis of radio beams carrying orbital angular momentum[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1127–1130. doi: 10.1109/LAWP.2016.2623808. [39] 熊孝文. 基于射频轨道角动量的波束赋形技术及应用研究[D]. [博士论文], 浙江大学, 2022.XIONG Xiaowen. Research on radio orbital angular momentum based beamforming technology and its applications[D]. [Ph. D. dissertation], Zhejiang University, 2022. [40] JIA Yinjie, XU Pengfei, and GUO Xinnian. MIMO system capacity based on different numbers of antennas[J]. Results in Engineering, 2022, 15: 100577. doi: 10.1016/J.RINENG.2022.100577. [41] LAVADIYA S P, SORATHIYA V, KANZARIYA S, et al. Low profile multiband microstrip patch antenna with frequency reconfigurable feature using PIN diode for S, C, X, and Ku band applications[J]. International journal of communication systems, 2022, (9): 35 doi: 10.1002/dac.5141. [42] LI Ji, HE Mang, WU Chunbo, et al. Radiation-pattern-reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1771–1775. doi: 10.1109/LAWP.2017.2676121. [43] WRIGHT M D, BARON W, MILLER J, et al. MEMS reconfigurable broadband patch antenna for conformal applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(6): 2770–2778. doi: 10.1109/TAP.2018.2819818. [44] MAJID H A, RAHIM M K A, HAMID M R, et al. A compact frequency-reconfigurable narrowband microstrip slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 616–619. doi: 10.1109/LAWP.2012.2202869. [45] QIN Peiyuan, WEI Feng, and GUO Y J. A wideband-to-narrowband tunable antenna using a reconfigurable filter[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2282–2285. doi: 10.1109/tap.2015.2402295. [46] BORDA-FORTUNY C, TONG K F, AL-ARMAGHANY A, et al. A low-cost fluid switch for frequency-reconfigurable Vivaldi antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3151–3154. doi: 10.1109/LAWP.2017.2759580. [47] YANG S L S, KISHK A A, and LEE K F. Frequency reconfigurable U-slot microstrip patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 127–129. doi: 10.1109/LAWP.2008.921330. [48] SIM C Y D, HAN T Y, and LIAO Yanjie. A frequency reconfigurable half annular ring slot antenna design[J]. IEEE Transactions on Antennas and propagation, 2014, 62(6): 3428–3431. doi: 10.1109/TAP.2014.2314314. [49] JI Luyang, QIN Peiyuan, GUO Y J, et al. A wideband polarization reconfigurable antenna with partially reflective surface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4534–4538. doi: 10.1109/TAP.2016.2593716. [50] TRAN H H, NGUYEN-TRONG N, LE T T, et al. Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3741–3746. doi: 10.1109/TAP.2018.2826657. [51] SUN Hucheng and SUN Sheng. A novel reconfigurable feeding network for quad-polarization-agile antenna design[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 311–316. doi: 10.1109/TAP.2015.2497350. [52] ROW J S and HOU M J. Design of polarization diversity patch antenna based on a compact reconfigurable feeding network[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5349–5352. doi: 10.1109/TAP.2014.2341271. [53] WU Jie, FAN Min, and WU Xianliang. A beam reconfigurable array antenna using slot-coupled microstrip structure[J]. Electronics Letters, 2023, 59(16): e12926. doi: 10.1049/ell2.12926. [54] WANG Zhan and DONG Yuandan. Metamaterial-based, vertically polarized, miniaturized beam-steering antenna for reconfigurable sub-6 GHz applications[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2239–2243. doi: 10.1109/LAWP.2022.3188548. [55] YOU Changjiang, LIU Shuhan, ZHANG Jinxi, et al. Frequency- and pattern-reconfigurable antenna array with broadband tuning and wide scanning angles[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5398–5403. doi: 10.1109/TAP.2023.3255647. [56] HU Jun and HAO Zhangcheng. Design of a frequency and polarization reconfigurable patch antenna with a stable gain[J]. IEEE Access, 2018, 6: 68169–68175. doi: 10.1109/ACCESS.2018.2879498. [57] CUI Jie, LIU Fengxue, ZHAO Lei, et al. Textile fixed-frequency pattern-reconfigurable coupled-mode substrate-integrated cavity antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(9): 1916–1919. doi: 10.1109/LAWP.2022.3185205. [58] WANG Pengfei, JIA Yongtao, LIU Ying, et al. A wideband low-RCS circularly polarized reconfigurable C-shaped antenna array based on liquid metal[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 8020–8029. doi: 10.1109/TAP.2022.3164179. [59] HU Jun, YANG Xujun, GE Lei, et al. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129. doi: 10.1109/TAP.2020.3048526. [60] ZHOU Jiatong, CHENG Wenchi, and LIANG Liping. OAM transmission in sparse multipath environments with fading[C]. 2020 IEEE International Conference on Communication, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9149057. [61] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787. [62] 廖希, 何昌文, 王洋, 等. 室内走廊环境毫米波OAM信道特性分析与统计建模[J]. 电子与信息学报, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145.LIAO Xi, HE Changwen, WANG Yang, et al. Characteristic analysis and statistical modeling of millimeter wave OAM channel in indoor corridor environment[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4194–4203. doi: 10.11999/JEIT211145. [63] SUGANUMA H, SAITO S, OGAWA K, et al. Effectiveness evaluation of dual-polarized OAM multiplexing employing SC-FDE in urban street canyon environments[J]. IEEE Access, 2022, 10: 31934–31941. doi: 10.1109/ACCESS.2022.3160161. [64] ZHANG Yiming and LI Jialin. Analyses and full-duplex applications of circularly polarized OAM arrays using sequentially rotated configuration[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7010–7020. doi: 10.1109/TAP.2018.2872169. [65] CHEN Rui, LONG Wenxuan, WANG Xiaodong, et al. Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6932–6947. doi: 10.1109/TWC.2020.3007026. [66] XIONG Xiaowen, ZHENG Shilie, ZHU Zelin, et al. Experimental study of plane spiral OAM mode-group based MIMO communications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 641–653. doi: 10.1109/TAP.2021.3098518. [67] LI Sijia, LI Zhuoyue, HUANG Guoshai, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Frontiers of Physics, 2022, 17(6): 62501. doi: 10.1007/s11467-022-1179-9. [68] YUAN S S A, WU Jie, CHEN M L N, et al. Approaching the fundamental limit of orbital-angular-momentum multiplexing through a hologram metasurface[J]. Physical Review Applied, 2021, 16(6): 064042. doi: 10.1103/PhysRevApplied.16.064042. [69] ISAKOV D, WU Y, ALLEN B, et al. Evaluation of the Laguerre–Gaussian mode purity produced by three-dimensional-printed microwave spiral phase plates[J]. Royal Society Open Science, 2020, 7(7): 200493. doi: 10.1098/rsos.200493. [70] ZHANG Z, ZHENG S, JIN X, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16(1): 1–1. doi: 10.1109/LAWP.2016.2552227. [71] BYUN W J, LEE Y S, KIM B S, et al. Simple generation of orbital angular momentum modes with azimuthally deformed Cassegrain subreflector[J]. Electronics Letters, 2015, 51(19): 1480–1482. doi: 10.1049/el.2015.1833. [72] WU Qiuli, JIANG Xuefeng, and ZHANG Chao. Attenuation of orbital angular momentum beam transmission with a parabolic antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(10): 1849–1853. doi: 10.1109/LAWP.2021.3094978. [73] ZHU Juanfeng, DU Chaohai, SHA W E I, et al. A wideband OAM antenna based on chiral harmonic diffraction[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2290–2294. doi: 10.1109/LAWP.2021.3108553. [74] BI Ke, XU Jianchun, YANG Daquan, et al. Generation of orbital angular momentum beam with circular polarization ceramic antenna array[J]. IEEE Photonics Journal, 2019, 11(2): 7901508. doi: 10.1109/JPHOT.2019.2899236. [75] YOO J U and SON H W. Quad‐mode radial uniform circular array antenna for OAM multiplexing[J]. IET Microwaves, Antennas & Propagation, 2020, 14(8): 728–733. doi: 10.1049/iet-map.2019.0767. [76] BAI Xudong, ZHANG Fuli, SUN Li, et al. Dynamic millimeter-wave OAM beam generation through programmable metasurface[J]. Nanophotonics, 2022, 11(7): 1389–1399. doi: 10.1515/nanoph-2021-0790. [77] ZHANG Tianzi, HU Jun, ZHANG Qiyun, et al. A compact multimode OAM antenna using sequentially rotated configuration[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(1): 134–138. doi: 10.1109/LAWP.2021.3121134. [78] QIN Fan, WAN Lulan, LI Lihong, et al. A transmission metasurface for generating OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1793–1796. doi: 10.1109/LAWP.2018.2867045. [79] JI Chen, SONG Jiakun, HUANG Cheng, et al. Dual-band vortex beam generation with different OAM modes using single-layer metasurface[J]. Optics Express, 2019, 27(1): 34–44. doi: 10.1364/OE.27.000034. [80] NASERI H, POURMOHAMMADI P, MELOUKI N, et al. Generation of mixed-OAM-carrying waves using huygens’ metasurface for mm-wave applications[J]. Sensors, 2023, 23(5): 2590. doi: 10.3390/s23052590. [81] LIANG Jiajun and ZHANG Shengli. Orbital angular momentum (OAM) generation by cylinder dielectric resonator antenna for future wireless communications[J]. IEEE Access, 2016, 4: 9570–9574. doi: 10.1109/ACCESS.2016.2636166. [82] PAN Yu, ZHENG Shilie, ZHENG Jiayu, et al. Generation of orbital angular momentum radio waves based on dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 385–388. doi: 10.1109/LAWP.2016.2578958. [83] ABD RAHMAN N A, NOOR S K, IBRAHIM I M, et al. A low-profile dielectric resonator antenna array for OAM waves generation at 5G NR bands[J]. Micromachines, 2023, 14(4): 841. doi: 10.3390/mi14040841. [84] YI Ziqiang, TIAN Shuai, LIU Yafei, et al. Multimode orbital angular momentum antenna based on four-arm planar spiral[J]. Electronics Letters, 2019, 55(16): 875–876. doi: 10.1049/el.2019.1606. [85] ZHENG F, CHEN Y, JI S, et al. Research status and prospects of orbital angular momentum technology in wireless communication[J]. Progress In Electromagnetics Research, 2020, 168: 113–132. doi: 10.2528/PIER20091104. [86] KOOHKAN E, JARCHI S, GHORBANI A, et al. Designing a compact helical slot antenna for multiple circularly polarized OAM modes[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(3): 527–530. doi: 10.1109/LAWP.2022.3217247. [87] NOOR S K, YASIN M N M, ISMAIL A M, et al. A review of orbital angular momentum vortex waves for the next generation wireless communications[J]. IEEE Access, 2022, 10: 89465–89484. doi: 10.1109/ACCESS.2022.3197653. [88] BYUN W J, KIM K S, KIM B S, et al. Multiplexed cassegrain reflector antenna for simultaneous generation of three orbital angular momentum (OAM) modes[J]. Scientific Reports, 2016, 6(1): 27339. doi: 10.1038/srep27339. [89] MING Jie and SHI Yan. A mode reconfigurable orbital angular momentum water antenna[J]. IEEE Access, 2020, 8: 89152–89160. doi: 10.1109/ACCESS.2020.2993490. [90] LIU Baiyang, LI Sirong, HE Yejun, et al. Generation of an orbital-angular-momentum-mode-reconfigurable beam by a broadband 1-bit electronically reconfigurable transmitarray[J]. Physical Review Applied, 2021, 15(4): 044035. doi: 10.1103/PhysRevApplied.15.044035. [91] NADI M, SEDIGHY S, and CHELDAVI A. Multimode OAM beam generation through 1-Bit programmable metasurface antenna for high throughput data communications[J]. 2023. doi: 10.21203/rs.3.rs-3022677/v1. [92] LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006. [93] CHEN Rui, ZHOU Jiaxing, LONG Wenxuan, et al. Hybrid circular array and luneberg lens for long-distance OAM wireless communications[J]. IEEE Transactions on Communications, 2023, 71(1): 485–497. doi: 10.1109/TCOMM.2022.3223697. [94] YU Zhong, GAO Qi, HE Bingwen, et al. Effects of concentration, temperature, and geometry on double spiral liquid orbital angular momentum antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2506–2510. doi: 10.1109/LAWP.2021.3115905.