高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空中智能反射面辅助的无线供能通信网络轨迹优化研究

周毅 晋占齐 石华光 田玉香 石磊 张延宇

周毅, 晋占齐, 石华光, 田玉香, 石磊, 张延宇. 空中智能反射面辅助的无线供能通信网络轨迹优化研究[J]. 电子与信息学报, 2024, 46(7): 2812-2820. doi: 10.11999/JEIT230830
引用本文: 周毅, 晋占齐, 石华光, 田玉香, 石磊, 张延宇. 空中智能反射面辅助的无线供能通信网络轨迹优化研究[J]. 电子与信息学报, 2024, 46(7): 2812-2820. doi: 10.11999/JEIT230830
ZHOU Yi, JIN Zhanqi, SHI Huaguang, TIAN Yuxiang, SHI Lei, ZHANG Yanyu. Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2812-2820. doi: 10.11999/JEIT230830
Citation: ZHOU Yi, JIN Zhanqi, SHI Huaguang, TIAN Yuxiang, SHI Lei, ZHANG Yanyu. Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2812-2820. doi: 10.11999/JEIT230830

空中智能反射面辅助的无线供能通信网络轨迹优化研究

doi: 10.11999/JEIT230830
基金项目: 国家自然科学基金(62176088, 62303159),国家重点研发计划“政府间国际科技创新合作”重点专项(2023YFE0112500),中国博士后科学基金(2023M741008),河南省重点研发与推广专项(222102210022),河南省青年人才托举工程(2022HYTP013)
详细信息
    作者简介:

    周毅:男,教授,研究方向为车联网与智能交通、多智能体协同控制、群体智能

    晋占齐:男,硕士,研究方向为空地协同组网、无人机辅助通信

    石华光:男,讲师,研究方向为工业互联网、多智能体协同控制、空地一体化协同组网

    田玉香:女,硕士,研究方向为空地协同组网、联邦学习

    石磊:男,教授,研究方向为多智能体协同定位与控制、社交网络观点动力学

    张延宇:男,副教授,研究方向为能源互联网、电动汽车充电优化调度、负荷预测

    通讯作者:

    石华光 shihuaguang@henu.edu.cn

  • 中图分类号: TN92

Trajectory Optimization Research of Wireless Power Communication Networks Assisted by Aerial Intelligent Reflecting Surface

Funds: The National Natural Science Foundation of China (62176088, 62303159), The International Strategic Innovative Project of National Key Research & Development Program of China (2023YFE0112500), China Postdoctoral Science Foundation (2023M741008), The Program for Science & Technology Development of Henan Province (222102210022), The Young Elite Scientist Sponsorship Program by Henan Association for Science and Technology (2022HYTP013)
  • 摘要: 由于无人机(UAV)良好的机动性、可靠性和快速部署等特性,无人机搭载智能反射面(IRS)可以有效解决复杂无线场景中混合接入点和节点之间由于障碍物遮挡导致信息传输和能量传输效率低的问题。该文提出一种基于时间划分的空中智能反射面辅助无线供能通信网络架构,充分利用空中智能反射面的灵活性提高网络性能。该架构针对每一个时隙,采用先收集能量后传输信息方案实现能量和数据的分时传输。在满足节点能量收集阈值的前提下,建立一个联合空中智能反射面飞行轨迹、节点选择关联变量、时隙分配比率和智能反射面相位的多变量耦合优化问题。采用块坐标下降算法把原始优化问题分解为4个子问题分别进行求解。首先根据波束对齐原理求解出智能反射面最优相位的闭式解,然后通过引入辅助变量并采用连续凸近似方法使非凸问题转变为凸问题,最后利用交替优化算法迭代求解。仿真结果表明,该文提出的联合优化方案具有很好的收敛性能并可以显著提高系统平均吞吐量。
  • 图  1  空中IRS辅助WPCN架构

    图  2  交替优化算法框架图

    图  3  平均吞吐量的收敛性比较

    图  4  不同发射功率下的平均吞吐量

    图  5  HAP与IRS之间路径损耗指数对平均吞吐量的影响

    图  6  IRS和节点之间路径损耗指数对平均吞吐量的影响

    图  7  反射元件个数对平均吞吐量的影响

    图  8  空中IRS飞行轨迹

    1  联合优化算法

     初始化$ {{\boldsymbol{U}}_0} $, $ {{\boldsymbol{\varTheta}} _0} $, $ {{{\alpha}} _0} $和$ {{{\tau}} _0} $;设置最大迭代回合$ {L_{{\mathrm{MAX}}}} $和精度$ \vartheta $;
     根据初始化的$ {{\boldsymbol{U}}_0} $计算$ {{\boldsymbol{\varTheta}} _0} $;
     While:
      (1)设置迭代回合$ l = l + 1 $;
      (2)给定$ {{\boldsymbol{U}}_{l - 1}} $, $ {{\boldsymbol{\varTheta}} _{l - 1}} $和$ {{{\tau}} _{l - 1}} $,通过求解问题P2更新$ {\alpha _l} $;
      (3)给定$ {{{\alpha}} _{l - 1}} $, $ {{\boldsymbol{\varTheta}} _{l - 1}} $和$ {{{\tau }}_{l - 1}} $,通过求解问题P4更新$ {{\boldsymbol{U}}_l} $;
      (4)根据求解的$ {{\boldsymbol{U}}_l} $更新$ {{\boldsymbol{\varTheta}} _l} $;
      (5)给定$ {\alpha _l} $, $ {{\boldsymbol{U}}_l} $和$ {{\boldsymbol{\varTheta}} _l} $,通过求解P5优化$ {{{\tau}} _l} $;
      (6)给定$ {\alpha _l} $, $ {{\boldsymbol{U}}_l} $和$ {{\boldsymbol{\varTheta}} _l} $,计算 $ {F_l} = \dfrac{1}{N}\displaystyle\sum\limits_{n = 1}^N {\displaystyle\sum\limits_{k = 1}^K {{\alpha _k}[n]{R_k}[n]} } $;
     Until: $ ({F_l} - {F_{l - 1}})/{F_l} < \vartheta $或$ l \ge {L_{{\mathrm{MAX}}}} $;
    结束并输出最优的$ {\boldsymbol{U}} $, ${\boldsymbol{ \varTheta}} $, $ \alpha $和$ {{\tau}} $;
    下载: 导出CSV

    表  1  仿真参数

    仿真参数 数值 仿真参数 数值
    UAV飞行高度($ {H_{\mathrm{U}}} $) 10 m HAP高度($ {H_{\mathrm{B}}} $) 5 m
    环境参数(a, b) 0.6, 0.11 参考信道增益($ {\beta _0} $) –0.054 6
    高斯白噪声($ {\sigma ^2} $) –80 dBm UAV最大飞行速度($ {V_{\max }} $) 10 m/s
    每一个时隙长度($ {\delta _t} $) 1 s 节点获取能量阈值($ {E_{{\mathrm{thr}}}} $) 5×10–3 J
    下载: 导出CSV
  • [1] WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
    [2] 朱政宇, 徐金雷, 孙钢灿, 等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.

    ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT internet of things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.
    [3] LIU Heng, ZHANG Yan, GONG Shiqi, et al. Optimal transmission strategy and time allocation for RIS-enhanced partially WPSNs[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7207–7221. doi: 10.1109/TWC.2022.3156732.
    [4] 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoqian and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [5] HUA Meng, WU Qingqing, and POOR H V. Power-efficient passive beamforming and resource allocation for IRS-aided WPCNs[J]. IEEE Transactions on Communications, 2022, 70(5): 3250–3265. doi: 10.1109/TCOMM.2022.3161688.
    [6] 王兆瑞, 刘亮, 李航, 等. 面向6G物联网的智能反射表面设计[J]. 物联网学报, 2020, 4(2): 84–95. doi: 10.11959/j.issn.2096-3750.2020.00160.

    WANG Zhaorui, LIU Liang, LI Hang, et al. Intelligent reflecting surface design for 6G-assited internet of things[J]. Chinese Journal on Internet of Things, 2020, 4(2): 84–95. doi: 10.11959/j.issn.2096-3750.2020.00160.
    [7] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [8] PAN Qianqian, WU Jun, ZHANG Xi, et al. Differential privacy and IRS empowered intelligent energy harvesting for 6G internet of things[J]. IEEE Internet of Things Journal, 2022, 9(22): 22109–22122. doi: 10.1109/JIOT.2021.3104833.
    [9] WU Qingqing, GUAN Xinrong, and ZHANG Rui. Intelligent reflecting surface-aided wireless energy and information transmission: An overview[J]. Proceedings of the IEEE, 2022, 110(1): 150–170. doi: 10.1109/JPROC.2021.3121790.
    [10] WU Qingqing, ZHOU Xiaobo, CHEN Wen, et al. IRS-aided WPCNs: A new optimization framework for dynamic IRS beamforming[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4725–4739. doi: 10.1109/TWC.2021.3132666.
    [11] ZHU Lipeng, ZHANG Jun, XIAO Zhenyu, et al. Millimeter-wave full-duplex UAV relay: Joint positioning, beamforming, and power control[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2057–2073. doi: 10.1109/JSAC.2020.3000879.
    [12] 李斌, 刘文帅, 谢万城, 等. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.

    LI Bin, LIU Wenshuai, XIE Wancheng, et al. Computation offloading scheme for RIS-empowered UAV edge network[J]. Journal on Communications, 2022, 43(10): 223–233. doi: 10.11959/j.issn.1000-436x.2022196.
    [13] 刘志新, 赵松晗, 杨毅, 等. 智能反射面辅助的无人机无线携能通信网络吞吐量最大化算法研究[J]. 电子与信息学报, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195.

    LIU Zhixin, ZHAO Songhan, YANG Yi, et al. Throughput maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195.
    [14] LI Sixian, DUO Bin, YUAN Xiaojun, et al. Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716–720. doi: 10.1109/LWC.2020.2966705.
    [15] MEI Haibo, YANG Kun, LIU Qiang, et al. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3020–3029. doi: 10.1109/TVT.2022.3143839.
    [16] GUROBI. GUROBI mathematical optimization solver[EB/OL]. https://www.gurobi.com/, 2019.
    [17] GRANT M C and BOYD S P. Graph implementations for nonsmooth convex programs[C]. Recent Advances in Learning and Control, London, UK, 2008: 95–110. doi: 10.1007/978-1-84800-155-8_7.
    [18] LIU Yuan, HAN Pengxia, and ZHAO Shengjie. Flexible and reliable multiuser SWIPT IoT network enhanced by UAV-mounted intelligent reflecting surface[J]. IEEE Transactions on Reliability, 2022, 71(2): 1092–1103. doi: 10.1109/TR.2022.3161336.
    [19] ZHOU Yi, JIN Zhanqi, SHI Huaguang, et al. Flying IRS: QoE-driven trajectory optimization and resource allocation based on adaptive deployment for WPCNs in 6G IoT[J]. IEEE Internet of Things Journal. doi: 10.1109/JIOT.2023.3322266.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  125
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-01-22
  • 网络出版日期:  2024-02-19
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回