高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IEEE 802.11ad多帧相关测速算法

黎灿 刘伟 赵塑盾 雷菁

黎灿, 刘伟, 赵塑盾, 雷菁. 基于IEEE 802.11ad多帧相关测速算法[J]. 电子与信息学报, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807
引用本文: 黎灿, 刘伟, 赵塑盾, 雷菁. 基于IEEE 802.11ad多帧相关测速算法[J]. 电子与信息学报, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807
LI Can, LIU Wei, ZHAO Sudun, LEI Jing. Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807
Citation: LI Can, LIU Wei, ZHAO Sudun, LEI Jing. Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4026-4032. doi: 10.11999/JEIT230807

基于IEEE 802.11ad多帧相关测速算法

doi: 10.11999/JEIT230807
详细信息
    作者简介:

    黎灿:女,助理工程师,研究方向为无线通信技术

    刘伟:男,副教授,研究方向为5G物联网、无线通信技术

    赵塑盾:男,硕士,研究方向为通信感知一体化波形设计

    雷菁:女,教授,研究方向为无线通信与抗干扰

    通讯作者:

    黎灿  licanzka@163.com

  • 中图分类号: TN929.5

Velocity Measurement Algorithm Base on Correlation Over Multi-frame with IEEE 802.11 ad

  • 摘要: 波形设计是实现通信感知一体化关键技术之一,有利于缓解频谱竞争压力、减少资源浪费。该文提出一种在车对万物互联(V2X)场景下基于IEEE 802.11ad无线局域网波形的测速算法。首先基于物理层帧结构中前导良好的目标感知特性对接收多帧信号的前导做不同移位的相关运算,将多普勒频偏估计转换为线性回归斜率估计得到多普勒估计值用以测速;其次提出相位补偿方案,解决由相位模糊导致的测速范围受限问题。仿真结果表明,在单目标视距场景下所提算法可实现厘米级测速精度,且相较于目前同类型算法具有更低测速误差。
  • 图  1  SC PHY帧结构

    图  2  单帧信号移位相关

    图  3  回波STF自相关的幅值与相位分量图

    图  4  多帧信号移位相关操作

    图  5  9帧回波前导移位相关的幅值与相位分量图

    图  6  不同距离条件下测速MSE

    图  7  不同SNR条件下测速MSE

    图  8  不同速度条件下测速MSE

    图  9  相位补偿后测速MSE

  • [1] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120
    [2] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
    [3] 张大庆, 张扶桑, 吴丹, 等. 基于CSI的通信感知一体化设计: 问题、挑战和展望[J]. 移动通信, 2022, 46(5): 9–16. doi: 10.3969/j.issn.1006-1010.2022.05.002

    ZHANG Daqing, ZHANG Fusang, WU Dan, et al. Design of CSI-based integrated sensing and communication: Issues, challenges and prospects[J]. Mobile Communications, 2022, 46(5): 9–16. doi: 10.3969/j.issn.1006-1010.2022.05.002
    [4] WANG Zhiqin, HAN Kaifeng, JIANG Jiamo, et al. Symbiotic sensing and communications towards 6G: Vision, applications, and technology trends[C]. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, USA, 2021: 1–5.
    [5] GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Fractional Fourier based waveform for a joint radar-communication system[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
    [6] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329
    [7] JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. MILCOM 2008 - 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6.
    [8] BASAR E, WEN Miaowen, MESLEH R, et al. Index modulation techniques for next-generation wireless networks[J]. IEEE Access, 2017, 5: 16693–16746. doi: 10.1109/ACCESS.2017.2737528
    [9] HASCH J, TOPAK E, SCHNABEL R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 845–860. doi: 10.1109/TMTT.2011.2178427
    [10] BILIK I. Comparative analysis of radar and lidar technologies for automotive applications[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(1): 244–269. doi: 10.1109/MITS.2022.3162886
    [11] SEHLA K, NGUYEN T M T, PUJOLLE G, et al. Resource allocation modes in C-V2X: From LTE-V2X to 5G-V2X[J]. IEEE Internet of Things Journal, 2022, 9(11): 8291–8314. doi: 10.1109/JIOT.2022.3159591
    [12] ETSI. ETSI TS 122 186 V16.2. 0 (2020-11) 5G; Service requirements for enhanced V2X scenarios[S]. ETSI: Nice, 2020.
    [13] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [14] CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152
    [15] REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012: 1576–1580.
    [16] NGUYEN D H N and HEATH R W. Delay and Doppler processing for multi-target detection with IEEE 802.11 OFDM signaling[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 3414–3418.
    [17] KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, USA, 2015: 1–5.
    [18] KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [19] HAN G, KIM S, and CHOI J. Multi-vehicle velocity estimation using IEEE 802.11ad waveform[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 4550–4554.
    [20] HAN G, CHOI J, and HEATH R W. Radar imaging based on IEEE 802.11ad waveform in V2I communications[J]. IEEE Transactions on Signal Processing, 2022, 70: 4981–4996. doi: 10.1109/TSP.2022.3213488
  • 加载中
图(9)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  250
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-10-09
  • 网络出版日期:  2023-10-14
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回