高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于张量Tucker分解的频谱地图构建算法

陈智博 胡景明 张邦宁 郭道省

陈智博, 胡景明, 张邦宁, 郭道省. 基于张量Tucker分解的频谱地图构建算法[J]. 电子与信息学报, 2023, 45(11): 4161-4169. doi: 10.11999/JEIT230796
引用本文: 陈智博, 胡景明, 张邦宁, 郭道省. 基于张量Tucker分解的频谱地图构建算法[J]. 电子与信息学报, 2023, 45(11): 4161-4169. doi: 10.11999/JEIT230796
CHEN Zhibo, HU Jingming, ZHANG Bangning, GUO Daoxing. Spectrum Map Construction Algorithm Based on Tensor Tucker Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4161-4169. doi: 10.11999/JEIT230796
Citation: CHEN Zhibo, HU Jingming, ZHANG Bangning, GUO Daoxing. Spectrum Map Construction Algorithm Based on Tensor Tucker Decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4161-4169. doi: 10.11999/JEIT230796

基于张量Tucker分解的频谱地图构建算法

doi: 10.11999/JEIT230796
详细信息
    作者简介:

    陈智博:男,博士生,研究方向为频谱感知、频谱态势构建

    胡景明:男,副教授,研究方向为信号处理

    张邦宁:男,教授,研究方向为卫星通信、信号处理

    郭道省:男,教授,研究方向为卫星通信、辐射源个体识别

    通讯作者:

    郭道省  xyzgfg@163.com

  • 中图分类号: TN011

Spectrum Map Construction Algorithm Based on Tensor Tucker Decomposition

  • 摘要: 该文研究使用少量监测样本数据构建动态电磁环境频谱地图。首先,将动态电磁环境的时变频谱地图建模为3维频谱张量,通过张量Tucker分解提取出具有物理意义的核张量和因子矩阵等低维特征。其次,根据频谱张量时域、空域、频域之间的相关性以及监测样本数据的稀疏性,设计一种基于Tucker分解的低秩张量补全模型,将频谱地图构建任务转化为数据缺失的低秩张量补全问题,并提出两种无需先验信息的频谱地图构建算法:高精度频谱地图构建算法和快速频谱地图构建算法。前者采用交替最小二乘法对核张量和因子矩阵交替求解,通过“补全-分解”的迭代过程实现对频谱地图的高精度构建。后者采用序列截断高阶奇异值分解法,对潜在多个低秩近似张量加权平均,该算法具有收敛快速和计算复杂度低的优势,在牺牲少量构建精度的情况下能够快速构建频谱地图。仿真实验结果表明,该文提出的两种算法能够精确构建频谱地图,在构建精度、运行时间消耗和噪声鲁棒性上均优于对比算法。
  • 图  1  动态电磁环境时变频谱地图建模

    图  2  频谱地图构建任务

    图  3  仿真场景示意图

    图  4  张量截断秩对频谱地图构建精度的影响

    图  5  不同噪声水平频谱地图构建算法性能比较

    图  6  不同算法时间复杂度的性能比较

    图  7  不同算法构建频谱地图可视化效果

    算法 1 基于迭代交替最小二乘法的高精度频谱地图构建算法
     输入: $ \mathcal{X} \in {\mathbb{R}^{L \times F \times T}} $,采样索引 ${\varOmega _T}$,截断秩 $\left( {{R_1},{R_2},{R_3}} \right)$
     输出: $ \hat {\mathcal{X}} $,核张量 $ \mathcal{G} $,因子矩阵 $ {\boldsymbol{S}},\; {\boldsymbol{U}}\;{\boldsymbol{V}} $, $t$时隙频谱地图 $ {{\boldsymbol{X}}_T} $
     初始化: $ {\mathcal{X}^0} = {P_{{\Omega _T}}}\left( \mathcal{X} \right) $, ${\mathcal{D}_0} \leftarrow \mathcal{O}$, $i \leftarrow 0$,初始化因子矩阵
      $ {\boldsymbol{S}}\in {{\mathbb{R}}}^{S\times {R}_{1}}, {\boldsymbol{U}}\in {{\mathbb{R}}}^{F\times {R}_{2}},{\boldsymbol{V}}\in {{\mathbb{R}}}^{T\times {R}_{3}} $
     Repeat
        $ {\mathcal{Z}^i} \leftarrow {\mathcal{X}^i}{ \times _2}{{\boldsymbol{U}}^{\text{T}}}{ \times _3}{{\boldsymbol{V}}^{\text{T}}} $
        ${\boldsymbol{S}} \leftarrow {\boldsymbol{Z}}_i^{(1)}$前 ${R_1}$个左奇异值向量
        $ {\mathcal{Z}^i} \leftarrow {\mathcal{X}^i}{ \times _1}{{\boldsymbol{S}}^{\text{T}}}{ \times _3}{{\boldsymbol{V}}^{\text{T}}} $
        ${\boldsymbol{U}} \leftarrow {\boldsymbol{Z}}_i^{(2)}$前 ${R_2}$个左奇异值向量
        $ {\mathcal{Z}^i} \leftarrow {\mathcal{X}^i}{ \times _1}{{\boldsymbol{S}}^{\text{T}}}{ \times _2}{{\boldsymbol{U}}^{\text{T}}} $
        ${\boldsymbol{V}} \leftarrow {\boldsymbol{Z}}_i^{(3)}$前 ${R_3}$个左奇异值向量
        $ \mathcal{G}\text{ }\leftarrow {\mathcal{X}}^{i}{\times }_{1}{{\boldsymbol{S}}}^{\text{T}}{\times }_{2}{{\boldsymbol{U}}}^{\text{T}}{\times }_{3}{{\boldsymbol{V}}}^{\text{T}} $
        $ {\mathcal{D}^i} \leftarrow \mathcal{G}{ \times _1}{\boldsymbol{S}}{ \times _2}{\boldsymbol{U}}{ \times _3}{\boldsymbol{V}} $
       更新对缺失数据的估计: $ {\hat {\mathcal{X}}^i} \leftarrow {P_{{\Omega _T}}}\left( {{\mathcal{X}^0}} \right) + {P_{\left( { \sim {\Omega _T}} \right)}}\left( {{\mathcal{D}^i}} \right) $
        $i \leftarrow i + 1$
     Until $ \frac{{\left\| {{{\hat {\mathcal{X}}}^i} - {{\hat {\mathcal{X}}}^{i - 1}}} \right\|_{\text{F}}^2}}{{\left\| {{{\hat {\mathcal{X}}}^i}} \right\|_{\text{F}}^2}} < \varepsilon $or $i > maxiterationtimes$
      $ \hat {\mathcal{X}} \leftarrow {\hat{ \mathcal{X}}^i} $
      $ {{\boldsymbol{X}}_T} = {\hat {\mathcal{X}}_{:,:,T}} $
    下载: 导出CSV
    算法2 基于序列截断高阶奇异值分解的快速频谱地图构建算法
     输入: $ {\hat {\mathcal{X}}_{T - 1}} $, $ {P_{{\Omega _T}}}\left( {{{\boldsymbol{X}}_T}} \right) $,截断秩 $\left( {{R_1},{R_2},{R_3}} \right)$
     输出: $ {\hat {\mathcal{X}}_T} $, $t$时隙频谱地图 $ {{\boldsymbol{X}}_T} $
     初始化: $ {\mathcal{X}^0} = \left[ {{{\hat {\mathcal{X}}}_{T - 1}},{P_{{\Omega _T}}}\left( {{{\boldsymbol{X}}_T}} \right)} \right] $, ${\mathcal{D}^0} \leftarrow \mathcal{O}$, $i \leftarrow 0$
     Repeat
       使用HOSVD算法,对 $ {\mathcal{X}^i} $依据截断秩进行分解,得到因子矩
       阵 $ {\boldsymbol{S}}\in {{\mathbb{R}}}^{S\times {R}_{1}},\;{\boldsymbol{U}}\in {{\mathbb{R}}}^{F\times {R}_{2}},\,{\boldsymbol{V}}\in {{\mathbb{R}}}^{T\times {R}_{3}} $,临时核张量
        $ {\mathcal{G}^1} \leftarrow {\mathcal{X}^i}{ \times _1}{\boldsymbol{S}} $
       根据式(11)计算张量 $ {\mathcal{X}_T} $的第1个低秩近似 $ {\hat {\mathcal{T}}^1} $
       临时核张量 $ {\mathcal{G}^2} \leftarrow {\mathcal{X}^i}{ \times _1}{\boldsymbol{S}}{ \times _2}{\boldsymbol{U}} $
       根据式(12)计算张量 $ {\mathcal{X}_T} $的第2个低秩近似 $ {\hat {\mathcal{T}}^2} $
       临时核张量 $ {\mathcal{G}^3} \leftarrow {\mathcal{X}^i}{ \times _1}{\boldsymbol{S}}{ \times _2}{\boldsymbol{U}}{ \times _3}{\boldsymbol{V}} $
       根据式(13)计算张量 $ {\mathcal{X}_T} $的第3个低秩近似 $ {\hat {\mathcal{T}}^3} $
       计算低秩近似的平均值 $ {\mathcal{D}^i} = \dfrac{1}{3}\left( {{{\hat {\mathcal{T}}}^1} + {{\hat {\mathcal{T}}}^2} + {{\hat {\mathcal{T}}}^3}} \right) $
       更新对缺失数据的估计: $ {\hat {\mathcal{X}}^i} = {P_{{\Omega _T}}}\left( {{\mathcal{X}^0}} \right) + {P_{( \sim {\Omega _T})}}\left( {{\mathcal{D}^i}} \right) $
     Until $ \frac{{\left\| {{{\hat {\mathcal{X}}}^i} - {{\hat {\mathcal{X}}}^{i - 1}}} \right\|_{\text{F}}^2}}{{\left\| {{{\hat {\mathcal{X}}}^i}} \right\|_{\text{F}}^2}} < \varepsilon $ or $i > {\rm{maxiterationtimes}}$
      $ {\hat {\mathcal{X}}_T} \leftarrow {\hat {\mathcal{X}}^i} $
      $ {{\boldsymbol{X}}_T} \leftarrow \hat {\mathcal{X}}_{:,:,T}^i $
    下载: 导出CSV
  • [1] SHEN Feng, DING Guoru, WU Qihui, et al. Compressed wideband spectrum mapping in 3D spectrum-heterogeneous environment[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4875–4886. doi: 10.1109/TVT.2022.3227168
    [2] ATANASOVSKI V, VAN DE BEEK J, DEJONGHE A, et al. Constructing radio environment maps with heterogeneous spectrum sensors[C]. 2011 IEEE International Symposium on Dynamic Spectrum Access Networks, Aachen, Germany, 2011: 660–661.
    [3] ROMERO D, KIM S J, and GIANNAKIS G B. Stochastic semiparametric regression for spectrum cartography[C]. The 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, 2015: 513–516.
    [4] HAMID M and BEFERULL-LOZANO B. Non-parametric spectrum cartography using adaptive radial basis functions[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3599–3603.
    [5] ROMERO D, SHRESTHA R, TEGANYA Y, et al. Aerial spectrum surveying: Radio map estimation with autonomous UAVs[C]. The 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing, Espoo, Finland, 2020: 1–6.
    [6] KIM S J and GIANNAKIS G B. Cognitive radio spectrum prediction using dictionary learning[C]. 2013 IEEE Global Communications Conference, Atlanta, USA, 2013: 3206–3211.
    [7] HUANG D H, WU S H, WU Wenrong, et al. Cooperative radio source positioning and power map reconstruction: A sparse Bayesian learning approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2318–2332. doi: 10.1109/TVT.2014.2345738
    [8] HU Yongli, ZHOU Wei, WEN Zheng, et al. Efficient radio map construction based on low-rank approximation for indoor positioning[J]. Mathematical Problems in Engineering, 2013, 2013: 461089. doi: 10.1155/2013/461089
    [9] KRIJESTORAC E, HANNA S, and CABRIC D. Spatial signal strength prediction using 3D maps and deep learning[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
    [10] TEGANYA Y and ROMERO D. Deep completion autoencoders for radio map estimation[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1710–1724. doi: 10.1109/TWC.2021.3106154
    [11] SHEN Feng, WANG Zheng, DING Guoru, et al. 3D compressed spectrum mapping with sampling locations optimization in spectrum-heterogeneous environment[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 326–338. doi: 10.1109/TWC.2021.3095342
    [12] SHRESTHA R, ROMERO D, and CHEPURI S P. Spectrum surveying: Active radio map estimation with autonomous UAVs[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 627–641. doi: 10.1109/TWC.2022.3197087
    [13] SHEN Feng, DING Guoru, and WU Qihui. Efficient remote compressed spectrum mapping in 3-D spectrum-heterogeneous environment with inaccessible areas[J]. IEEE Wireless Communications Letters, 2022, 11(7): 1488–1492. doi: 10.1109/LWC.2022.3175820
    [14] LI Xi, WANG Xin, SONG Tiecheng, et al. Robust online prediction of spectrum map with incomplete and corrupted observations[J]. IEEE Transactions on Mobile Computing, 2022, 21(12): 4583–4594. doi: 10.1109/TMC.2021.3081715
    [15] LI Qun, SHI Xiangqiong, and SCHONFELD D. Robust HOSVD-based higher-order data indexing and retrieval[J]. IEEE Signal Processing Letters, 2013, 20(10): 984–987. doi: 10.1109/LSP.2013.2277861
    [16] LI Xuelong, ZHANG Hongyuan, and ZHANG Rui. Matrix completion via non-convex relaxation and adaptive correlation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1981–1991. doi: 10.1109/TPAMI.2022.3157083
    [17] ZHANG Shuai, YIN Penghang, and XIN J. Transformed Schatten-1 iterative thresholding algorithms for low rank matrix completion[J]. Communications in Mathematical Sciences, 2017, 15(3): 839–862. doi: 10.4310/CMS.2017.v15.n3.a12
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  455
  • HTML全文浏览量:  304
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-10-31
  • 网络出版日期:  2023-11-02
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回